/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * MIEMDD.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.mi; import weka.classifiers.RandomizableClassifier; import weka.core.Capabilities; import weka.core.FastVector; import weka.core.Instance; import weka.core.Instances; import weka.core.MultiInstanceCapabilitiesHandler; import weka.core.Optimization; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.SelectedTag; import weka.core.Tag; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Normalize; import weka.filters.unsupervised.attribute.ReplaceMissingValues; import weka.filters.unsupervised.attribute.Standardize; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** <!-- globalinfo-start --> * EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.<br/> * It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM. In this implementation, we use most-likely cause DD model and only use 3 random selected postive bags as initial starting points of EM.<br/> * <br/> * For more information see:<br/> * <br/> * Qi Zhang, Sally A. Goldman: EM-DD: An Improved Multiple-Instance Learning Technique. In: Advances in Neural Information Processing Systems 14, 1073-108, 2001. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Zhang2001, * author = {Qi Zhang and Sally A. Goldman}, * booktitle = {Advances in Neural Information Processing Systems 14}, * pages = {1073-108}, * publisher = {MIT Press}, * title = {EM-DD: An Improved Multiple-Instance Learning Technique}, * year = {2001} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -N <num> * Whether to 0=normalize/1=standardize/2=neither. * (default 1=standardize)</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Lin Dong (ld21@cs.waikato.ac.nz) * @version $Revision: 5546 $ */ public class MIEMDD extends RandomizableClassifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 3899547154866223734L; /** The index of the class attribute */ protected int m_ClassIndex; protected double[] m_Par; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** MI data */ protected double[][][] m_Data; /** All attribute names */ protected Instances m_Attributes; /** MI data */ protected double[][] m_emData; /** The filter used to standardize/normalize all values. */ protected Filter m_Filter = null; /** Whether to normalize/standardize/neither, default:standardize */ protected int m_filterType = FILTER_STANDARDIZE; /** Normalize training data */ public static final int FILTER_NORMALIZE = 0; /** Standardize training data */ public static final int FILTER_STANDARDIZE = 1; /** No normalization/standardization */ public static final int FILTER_NONE = 2; /** The filter to apply to the training data */ public static final Tag[] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), new Tag(FILTER_STANDARDIZE, "Standardize training data"), new Tag(FILTER_NONE, "No normalization/standardization"), }; /** The filter used to get rid of missing values. */ protected ReplaceMissingValues m_Missing = new ReplaceMissingValues(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "EMDD model builds heavily upon Dietterich's Diverse Density (DD) " + "algorithm.\nIt is a general framework for MI learning of converting " + "the MI problem to a single-instance setting using EM. In this " + "implementation, we use most-likely cause DD model and only use 3 " + "random selected postive bags as initial starting points of EM.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Qi Zhang and Sally A. Goldman"); result.setValue(Field.TITLE, "EM-DD: An Improved Multiple-Instance Learning Technique"); result.setValue(Field.BOOKTITLE, "Advances in Neural Information Processing Systems 14"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.PAGES, "1073-108"); result.setValue(Field.PUBLISHER, "MIT Press"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tWhether to 0=normalize/1=standardize/2=neither.\n" + "\t(default 1=standardize)", "N", 1, "-N <num>")); Enumeration enm = super.listOptions(); while (enm.hasMoreElements()) result.addElement(enm.nextElement()); return result.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -N <num> * Whether to 0=normalize/1=standardize/2=neither. * (default 1=standardize)</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setFilterType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_FILTER)); } else { setFilterType(new SelectedTag(FILTER_STANDARDIZE, TAGS_FILTER)); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-N"); result.add("" + m_filterType); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String filterTypeTipText() { return "The filter type for transforming the training data."; } /** * Gets how the training data will be transformed. Will be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @return the filtering mode */ public SelectedTag getFilterType() { return new SelectedTag(m_filterType, TAGS_FILTER); } /** * Sets how the training data will be transformed. Should be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @param newType the new filtering mode */ public void setFilterType(SelectedTag newType) { if (newType.getTags() == TAGS_FILTER) { m_filterType = newType.getSelectedTag().getID(); } } private class OptEng extends Optimization { /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood for (int i=0; i<m_Classes.length; i++){ // ith bag double ins=0.0; for (int k=0; k<m_emData[i].length; k++) //attribute index ins += (m_emData[i][k]-x[k*2])*(m_emData[i][k]-x[k*2])* x[k*2+1]*x[k*2+1]; ins = Math.exp(-ins); // Pr. of being positive if (m_Classes[i]==1){ if (ins <= m_Zero) ins = m_Zero; nll -= Math.log(ins); //bag level -LogLikelihood } else{ ins = 1.0 - ins; //Pr. of being negative if(ins<=m_Zero) ins=m_Zero; nll -= Math.log(ins); } } return nll; } /** * Evaluate Jacobian vector * @param x the current values of variables * @return the gradient vector */ protected double[] evaluateGradient(double[] x){ double[] grad = new double[x.length]; for (int i=0; i<m_Classes.length; i++){ // ith bag double[] numrt = new double[x.length]; double exp=0.0; for (int k=0; k<m_emData[i].length; k++) //attr index exp += (m_emData[i][k]-x[k*2])*(m_emData[i][k]-x[k*2]) *x[k*2+1]*x[k*2+1]; exp = Math.exp(-exp); //Pr. of being positive //Instance-wise update for (int p=0; p<m_emData[i].length; p++){ // pth variable numrt[2*p] = 2.0*(x[2*p]-m_emData[i][p])*x[p*2+1]*x[p*2+1]; numrt[2*p+1] = 2.0*(x[2*p]-m_emData[i][p])*(x[2*p]-m_emData[i][p]) *x[p*2+1]; } //Bag-wise update for (int q=0; q<m_emData[i].length; q++){ if (m_Classes[i] == 1) {//derivation of (-LogLikeliHood) for positive bags grad[2*q] += numrt[2*q]; grad[2*q+1] += numrt[2*q+1]; } else{ //derivation of (-LogLikeliHood) for negative bags grad[2*q] -= numrt[2*q]*exp/(1.0-exp); grad[2*q+1] -= numrt[2*q+1]*exp/(1.0-exp); } } } // one bag return grad; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5546 $"); } } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.BINARY_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance classifier for the * relational data. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * Builds the classifier * * @param train the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances train) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(train); // remove instances with missing class train = new Instances(train); train.deleteWithMissingClass(); m_ClassIndex = train.classIndex(); m_NumClasses = train.numClasses(); int nR = train.attribute(1).relation().numAttributes(); int nC = train.numInstances(); int[] bagSize = new int[nC]; Instances datasets = new Instances(train.attribute(1).relation(), 0); m_Data = new double [nC][nR][]; // Data values m_Classes = new int [nC]; // Class values m_Attributes = datasets.stringFreeStructure(); if (m_Debug) { System.out.println("\n\nExtracting data..."); } for (int h = 0; h < nC; h++) {//h_th bag Instance current = train.instance(h); m_Classes[h] = (int)current.classValue(); // Class value starts from 0 Instances currInsts = current.relationalValue(1); for (int i = 0; i < currInsts.numInstances(); i++){ Instance inst = currInsts.instance(i); datasets.add(inst); } int nI = currInsts.numInstances(); bagSize[h] = nI; } /* filter the training data */ if (m_filterType == FILTER_STANDARDIZE) m_Filter = new Standardize(); else if (m_filterType == FILTER_NORMALIZE) m_Filter = new Normalize(); else m_Filter = null; if (m_Filter != null) { m_Filter.setInputFormat(datasets); datasets = Filter.useFilter(datasets, m_Filter); } m_Missing.setInputFormat(datasets); datasets = Filter.useFilter(datasets, m_Missing); int instIndex = 0; int start = 0; for (int h = 0; h < nC; h++) { for (int i = 0; i < datasets.numAttributes(); i++) { // initialize m_data[][][] m_Data[h][i] = new double[bagSize[h]]; instIndex=start; for (int k = 0; k < bagSize[h]; k++){ m_Data[h][i][k] = datasets.instance(instIndex).value(i); instIndex++; } } start=instIndex; } if (m_Debug) { System.out.println("\n\nIteration History..." ); } m_emData =new double[nC][nR]; m_Par= new double[2*nR]; double[] x = new double[nR*2]; double[] tmp = new double[x.length]; double[] pre_x = new double[x.length]; double[] best_hypothesis = new double[x.length]; double[][] b = new double[2][x.length]; OptEng opt; double bestnll = Double.MAX_VALUE; double min_error = Double.MAX_VALUE; double nll, pre_nll; int iterationCount; for (int t = 0; t < x.length; t++) { b[0][t] = Double.NaN; b[1][t] = Double.NaN; } //random pick 3 positive bags Random r = new Random(getSeed()); FastVector index = new FastVector(); int n1, n2, n3; do { n1 = r.nextInt(nC-1); } while (m_Classes[n1] == 0); index.addElement(new Integer(n1)); do { n2 = r.nextInt(nC-1); } while (n2 == n1|| m_Classes[n2] == 0); index.addElement(new Integer(n2)); do { n3 = r.nextInt(nC-1); } while (n3 == n1 || n3 == n2 || m_Classes[n3] == 0); index.addElement(new Integer(n3)); for (int s = 0; s < index.size(); s++){ int exIdx = ((Integer)index.elementAt(s)).intValue(); if (m_Debug) System.out.println("\nH0 at "+exIdx); for (int p = 0; p < m_Data[exIdx][0].length; p++) { //initialize a hypothesis for (int q = 0; q < nR; q++) { x[2 * q] = m_Data[exIdx][q][p]; x[2 * q + 1] = 1.0; } pre_nll = Double.MAX_VALUE; nll = Double.MAX_VALUE/10.0; iterationCount = 0; //while (Math.abs(nll-pre_nll)>0.01*pre_nll && iterationCount<10) { //stop condition while (nll < pre_nll && iterationCount < 10) { iterationCount++; pre_nll = nll; if (m_Debug) System.out.println("\niteration: "+iterationCount); //E-step (find one instance from each bag with max likelihood ) for (int i = 0; i < m_Data.length; i++) { //for each bag int insIndex = findInstance(i, x); for (int att = 0; att < m_Data[0].length; att++) //for each attribute m_emData[i][att] = m_Data[i][att][insIndex]; } if (m_Debug) System.out.println("E-step for new H' finished"); //M-step opt = new OptEng(); tmp = opt.findArgmin(x, b); while (tmp == null) { tmp = opt.getVarbValues(); if (m_Debug) System.out.println("200 iterations finished, not enough!"); tmp = opt.findArgmin(tmp, b); } nll = opt.getMinFunction(); pre_x = x; x = tmp; // update hypothesis //keep the track of the best target point which has the minimum nll /* if (nll < bestnll) { bestnll = nll; m_Par = tmp; if (m_Debug) System.out.println("!!!!!!!!!!!!!!!!Smaller NLL found: " + nll); }*/ //if (m_Debug) //System.out.println(exIdx+" "+p+": "+nll+" "+pre_nll+" " +bestnll); } //converged for one instance //evaluate the hypothesis on the training data and //keep the track of the hypothesis with minimum error on training data double distribution[] = new double[2]; int error = 0; if (nll > pre_nll) m_Par = pre_x; else m_Par = x; for (int i = 0; i<train.numInstances(); i++) { distribution = distributionForInstance (train.instance(i)); if (distribution[1] >= 0.5 && m_Classes[i] == 0) error++; else if (distribution[1]<0.5 && m_Classes[i] == 1) error++; } if (error < min_error) { best_hypothesis = m_Par; min_error = error; if (nll > pre_nll) bestnll = pre_nll; else bestnll = nll; if (m_Debug) System.out.println("error= "+ error +" nll= " + bestnll); } } if (m_Debug) { System.out.println(exIdx+ ": -------------<Converged>--------------"); System.out.println("current minimum error= "+min_error+" nll= "+bestnll); } } m_Par = best_hypothesis; } /** * given x, find the instance in ith bag with the most likelihood * probability, which is most likely to responsible for the label of the * bag For a positive bag, find the instance with the maximal probability * of being positive For a negative bag, find the instance with the minimal * probability of being negative * * @param i the bag index * @param x the current values of variables * @return index of the instance in the bag */ protected int findInstance(int i, double[] x){ double min=Double.MAX_VALUE; int insIndex=0; int nI = m_Data[i][0].length; // numInstances in ith bag for (int j=0; j<nI; j++){ double ins=0.0; for (int k=0; k<m_Data[i].length; k++) // for each attribute ins += (m_Data[i][k][j]-x[k*2])*(m_Data[i][k][j]-x[k*2])* x[k*2+1]*x[k*2+1]; //the probability can be calculated as Math.exp(-ins) //to find the maximum Math.exp(-ins) is equivalent to find the minimum of (ins) if (ins<min) { min=ins; insIndex=j; } } return insIndex; } /** * Computes the distribution for a given exemplar * * @param exmp the exemplar for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance exmp) throws Exception { // Extract the data Instances ins = exmp.relationalValue(1); if (m_Filter != null) ins = Filter.useFilter(ins, m_Filter); ins = Filter.useFilter(ins, m_Missing); int nI = ins.numInstances(), nA = ins.numAttributes(); double[][] dat = new double [nI][nA]; for (int j = 0; j < nI; j++){ for (int k=0; k<nA; k++){ dat[j][k] = ins.instance(j).value(k); } } //find the concept instance in the exemplar double min = Double.MAX_VALUE; double maxProb = -1.0; for (int j = 0; j < nI; j++){ double exp = 0.0; for (int k = 0; k<nA; k++) // for each attribute exp += (dat[j][k]-m_Par[k*2])*(dat[j][k]-m_Par[k*2])*m_Par[k*2+1]*m_Par[k*2+1]; //the probability can be calculated as Math.exp(-exp) //to find the maximum Math.exp(-exp) is equivalent to find the minimum of (exp) if (exp < min) { min = exp; maxProb = Math.exp(-exp); //maximum probability of being positive } } // Compute the probability of the bag double[] distribution = new double[2]; distribution[1] = maxProb; distribution[0] = 1.0 - distribution[1]; //mininum prob. of being negative return distribution; } /** * Gets a string describing the classifier. * * @return a string describing the classifer built. */ public String toString() { String result = "MIEMDD"; if (m_Par == null) { return result + ": No model built yet."; } result += "\nCoefficients...\n" + "Variable Point Scale\n"; for (int j = 0, idx=0; j < m_Par.length/2; j++, idx++) { result += m_Attributes.attribute(idx).name(); result += " "+Utils.doubleToString(m_Par[j*2], 12, 4); result += " "+Utils.doubleToString(m_Par[j*2+1], 12, 4)+"\n"; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5546 $"); } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String[] argv) { runClassifier(new MIEMDD(), argv); } }