/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Logistic.java * Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.functions; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.core.Aggregateable; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Optimization; import weka.core.ConjugateGradientOptimization; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.filters.Filter; import weka.filters.unsupervised.attribute.NominalToBinary; import weka.filters.unsupervised.attribute.RemoveUseless; import weka.filters.unsupervised.attribute.ReplaceMissingValues; import java.util.Enumeration; import java.util.Vector; /** <!-- globalinfo-start --> * Class for building and using a multinomial logistic regression model with a ridge estimator.<br/> * <br/> * There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992): <br/> * <br/> * If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.<br/> * <br/> * The probability for class j with the exception of the last class is<br/> * <br/> * Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1) <br/> * <br/> * The last class has probability<br/> * <br/> * 1-(sum[j=1..(k-1)]Pj(Xi)) <br/> * = 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)<br/> * <br/> * The (negative) multinomial log-likelihood is thus: <br/> * <br/> * L = -sum[i=1..n]{<br/> * sum[j=1..(k-1)](Yij * ln(Pj(Xi)))<br/> * +(1 - (sum[j=1..(k-1)]Yij)) <br/> * * ln(1 - sum[j=1..(k-1)]Pj(Xi))<br/> * } + ridge * (B^2)<br/> * <br/> * In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For details of the optimization procedure, please check weka.core.Optimization class.<br/> * <br/> * Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights.<br/> * <br/> * For more information see:<br/> * <br/> * le Cessie, S., van Houwelingen, J.C. (1992). Ridge Estimators in Logistic Regression. Applied Statistics. 41(1):191-201.<br/> * <br/> * Note: Missing values are replaced using a ReplaceMissingValuesFilter, and nominal attributes are transformed into numeric attributes using a NominalToBinaryFilter. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @article{leCessie1992, * author = {le Cessie, S. and van Houwelingen, J.C.}, * journal = {Applied Statistics}, * number = {1}, * pages = {191-201}, * title = {Ridge Estimators in Logistic Regression}, * volume = {41}, * year = {1992} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Turn on debugging output.</pre> * * <pre> -R <ridge> * Set the ridge in the log-likelihood.</pre> * * <pre> -M <number> * Set the maximum number of iterations (default -1, until convergence).</pre> * <!-- options-end --> * * @author Xin Xu (xx5@cs.waikato.ac.nz) * @version $Revision: 9785 $ */ public class Logistic extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler, Aggregateable<Logistic> { /** for serialization */ static final long serialVersionUID = 3932117032546553727L; /** The coefficients (optimized parameters) of the model */ protected double [][] m_Par; /** The data saved as a matrix */ protected double [][] m_Data; /** The number of attributes in the model */ protected int m_NumPredictors; /** The index of the class attribute */ protected int m_ClassIndex; /** The number of the class labels */ protected int m_NumClasses; /** The ridge parameter. */ protected double m_Ridge = 1e-8; /** An attribute filter */ private RemoveUseless m_AttFilter; /** The filter used to make attributes numeric. */ private NominalToBinary m_NominalToBinary; /** The filter used to get rid of missing values. */ private ReplaceMissingValues m_ReplaceMissingValues; /** Debugging output */ protected boolean m_Debug; /** Log-likelihood of the searched model */ protected double m_LL; /** The maximum number of iterations. */ private int m_MaxIts = -1; /** Wether to use conjugate gradient descent rather than BFGS updates. */ private boolean m_useConjugateGradientDescent = false; private Instances m_structure; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a multinomial logistic " +"regression model with a ridge estimator.\n\n" +"There are some modifications, however, compared to the paper of " +"leCessie and van Houwelingen(1992): \n\n" +"If there are k classes for n instances with m attributes, the " +"parameter matrix B to be calculated will be an m*(k-1) matrix.\n\n" +"The probability for class j with the exception of the last class is\n\n" +"Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1) \n\n" +"The last class has probability\n\n" +"1-(sum[j=1..(k-1)]Pj(Xi)) \n\t= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)\n\n" +"The (negative) multinomial log-likelihood is thus: \n\n" +"L = -sum[i=1..n]{\n\tsum[j=1..(k-1)](Yij * ln(Pj(Xi)))" +"\n\t+(1 - (sum[j=1..(k-1)]Yij)) \n\t* ln(1 - sum[j=1..(k-1)]Pj(Xi))" +"\n\t} + ridge * (B^2)\n\n" +"In order to find the matrix B for which L is minimised, a " +"Quasi-Newton Method is used to search for the optimized values of " +"the m*(k-1) variables. Note that before we use the optimization " +"procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For " +"details of the optimization procedure, please check " +"weka.core.Optimization class.\n\n" +"Although original Logistic Regression does not deal with instance " +"weights, we modify the algorithm a little bit to handle the " +"instance weights.\n\n" +"For more information see:\n\n" + getTechnicalInformation().toString() + "\n\n" +"Note: Missing values are replaced using a ReplaceMissingValuesFilter, and " +"nominal attributes are transformed into numeric attributes using a " +"NominalToBinaryFilter."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "le Cessie, S. and van Houwelingen, J.C."); result.setValue(Field.YEAR, "1992"); result.setValue(Field.TITLE, "Ridge Estimators in Logistic Regression"); result.setValue(Field.JOURNAL, "Applied Statistics"); result.setValue(Field.VOLUME, "41"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "191-201"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option("\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option("\tUse conjugate gradient descent rather than BFGS updates.", "C", 0, "-C")); newVector.addElement(new Option("\tSet the ridge in the log-likelihood.", "R", 1, "-R <ridge>")); newVector.addElement(new Option("\tSet the maximum number of iterations"+ " (default -1, until convergence).", "M", 1, "-M <number>")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Turn on debugging output.</pre> * * <pre> -R <ridge> * Set the ridge in the log-likelihood.</pre> * * <pre> -M <number> * Set the maximum number of iterations (default -1, until convergence).</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); setUseConjugateGradientDescent(Utils.getFlag('C', options)); String ridgeString = Utils.getOption('R', options); if (ridgeString.length() != 0) m_Ridge = Double.parseDouble(ridgeString); else m_Ridge = 1.0e-8; String maxItsString = Utils.getOption('M', options); if (maxItsString.length() != 0) m_MaxIts = Integer.parseInt(maxItsString); else m_MaxIts = -1; } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [6]; int current = 0; if (getDebug()) options[current++] = "-D"; if (getUseConjugateGradientDescent()) { options[current++] = "-C"; } options[current++] = "-R"; options[current++] = ""+m_Ridge; options[current++] = "-M"; options[current++] = ""+m_MaxIts; while (current < options.length) options[current++] = ""; return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String debugTipText() { return "Output debug information to the console."; } /** * Sets whether debugging output will be printed. * * @param debug true if debugging output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Gets whether debugging output will be printed. * * @return true if debugging output will be printed */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useConjugateGradientDescentTipText() { return "Use conjugate gradient descent rather than BFGS updates; faster for problems with many parameters."; } /** * Sets whether conjugate gradient descent is used. * * @param useConjugateGradientDescent true if CGD is to be used. */ public void setUseConjugateGradientDescent(boolean useConjugateGradientDescent) { m_useConjugateGradientDescent = useConjugateGradientDescent; } /** * Gets whether to use conjugate gradient descent rather than BFGS updates. * * @return true if CGD is used */ public boolean getUseConjugateGradientDescent() { return m_useConjugateGradientDescent; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String ridgeTipText() { return "Set the Ridge value in the log-likelihood."; } /** * Sets the ridge in the log-likelihood. * * @param ridge the ridge */ public void setRidge(double ridge) { m_Ridge = ridge; } /** * Gets the ridge in the log-likelihood. * * @return the ridge */ public double getRidge() { return m_Ridge; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxItsTipText() { return "Maximum number of iterations to perform."; } /** * Get the value of MaxIts. * * @return Value of MaxIts. */ public int getMaxIts() { return m_MaxIts; } /** * Set the value of MaxIts. * * @param newMaxIts Value to assign to MaxIts. */ public void setMaxIts(int newMaxIts) { m_MaxIts = newMaxIts; } private class OptEng extends Optimization { OptObject m_oO = null; private OptEng(OptObject oO) { m_oO = oO; } protected double objectiveFunction(double[] x){ return m_oO.objectiveFunction(x); } protected double[] evaluateGradient(double[] x){ return m_oO.evaluateGradient(x); } public String getRevision() { return RevisionUtils.extract("$Revision: 9785 $"); } } private class OptEngCG extends ConjugateGradientOptimization { OptObject m_oO = null; private OptEngCG(OptObject oO) { m_oO = oO; } protected double objectiveFunction(double[] x){ return m_oO.objectiveFunction(x); } protected double[] evaluateGradient(double[] x){ return m_oO.evaluateGradient(x); } public String getRevision() { return RevisionUtils.extract("$Revision: 9785 $"); } } private class OptObject { /** Weights of instances in the data */ private double[] weights; /** Class labels of instances */ private int[] cls; /** * Set the weights of instances * @param w the weights to be set */ public void setWeights(double[] w) { weights = w; } /** * Set the class labels of instances * @param c the class labels to be set */ public void setClassLabels(int[] c) { cls = c; } /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood int dim = m_NumPredictors+1; // Number of variables per class for(int i=0; i<cls.length; i++){ // ith instance double[] exp = new double[m_NumClasses-1]; int index; for(int offset=0; offset<m_NumClasses-1; offset++){ index = offset * dim; for(int j=0; j<dim; j++) exp[offset] += m_Data[i][j]*x[index + j]; } double max = exp[Utils.maxIndex(exp)]; double denom = Math.exp(-max); double num; if (cls[i] == m_NumClasses - 1) { // Class of this instance num = -max; } else { num = exp[cls[i]] - max; } for(int offset=0; offset<m_NumClasses-1; offset++){ denom += Math.exp(exp[offset] - max); } nll -= weights[i]*(num - Math.log(denom)); // Weighted NLL } // Ridge: note that intercepts NOT included for(int offset=0; offset<m_NumClasses-1; offset++){ for(int r=1; r<dim; r++) nll += m_Ridge*x[offset*dim+r]*x[offset*dim+r]; } return nll; } /** * Evaluate Jacobian vector * @param x the current values of variables * @return the gradient vector */ protected double[] evaluateGradient(double[] x){ double[] grad = new double[x.length]; int dim = m_NumPredictors+1; // Number of variables per class for(int i=0; i<cls.length; i++){ // ith instance double[] num=new double[m_NumClasses-1]; // numerator of [-log(1+sum(exp))]' int index; for(int offset=0; offset<m_NumClasses-1; offset++){ // Which part of x double exp=0.0; index = offset * dim; for(int j=0; j<dim; j++) exp += m_Data[i][j]*x[index + j]; num[offset] = exp; } double max = num[Utils.maxIndex(num)]; double denom = Math.exp(-max); // Denominator of [-log(1+sum(exp))]' for(int offset=0; offset<m_NumClasses-1; offset++){ num[offset] = Math.exp(num[offset] - max); denom += num[offset]; } Utils.normalize(num, denom); // Update denominator of the gradient of -log(Posterior) double firstTerm; for(int offset=0; offset<m_NumClasses-1; offset++){ // Which part of x index = offset * dim; firstTerm = weights[i] * num[offset]; for(int q=0; q<dim; q++){ grad[index + q] += firstTerm * m_Data[i][q]; } } if(cls[i] != m_NumClasses-1){ // Not the last class for(int p=0; p<dim; p++){ grad[cls[i]*dim+p] -= weights[i]*m_Data[i][p]; } } } // Ridge: note that intercepts NOT included for(int offset=0; offset<m_NumClasses-1; offset++){ for(int r=1; r<dim; r++) grad[offset*dim+r] += 2*m_Ridge*x[offset*dim+r]; } return grad; } } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds the classifier * * @param train the training data to be used for generating the * boosted classifier. * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances train) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(train); // remove instances with missing class train = new Instances(train); train.deleteWithMissingClass(); // Replace missing values m_ReplaceMissingValues = new ReplaceMissingValues(); m_ReplaceMissingValues.setInputFormat(train); train = Filter.useFilter(train, m_ReplaceMissingValues); // Remove useless attributes m_AttFilter = new RemoveUseless(); m_AttFilter.setInputFormat(train); train = Filter.useFilter(train, m_AttFilter); // Transform attributes m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(train); train = Filter.useFilter(train, m_NominalToBinary); // Save the structure for printing the model m_structure = new Instances(train, 0); // Extract data m_ClassIndex = train.classIndex(); m_NumClasses = train.numClasses(); int nK = m_NumClasses - 1; // Only K-1 class labels needed int nR = m_NumPredictors = train.numAttributes() - 1; int nC = train.numInstances(); m_Data = new double[nC][nR + 1]; // Data values int [] Y = new int[nC]; // Class labels double [] xMean= new double[nR + 1]; // Attribute means double [] xSD = new double[nR + 1]; // Attribute stddev's double [] sY = new double[nK + 1]; // Number of classes double [] weights = new double[nC]; // Weights of instances double totWeights = 0; // Total weights of the instances m_Par = new double[nR + 1][nK]; // Optimized parameter values if (m_Debug) { System.out.println("Extracting data..."); } for (int i = 0; i < nC; i++) { // initialize X[][] Instance current = train.instance(i); Y[i] = (int)current.classValue(); // Class value starts from 0 weights[i] = current.weight(); // Dealing with weights totWeights += weights[i]; m_Data[i][0] = 1; int j = 1; for (int k = 0; k <= nR; k++) { if (k != m_ClassIndex) { double x = current.value(k); m_Data[i][j] = x; xMean[j] += weights[i]*x; xSD[j] += weights[i]*x*x; j++; } } // Class count sY[Y[i]]++; } if((totWeights <= 1) && (nC > 1)) throw new Exception("Sum of weights of instances less than 1, please reweight!"); xMean[0] = 0; xSD[0] = 1; for (int j = 1; j <= nR; j++) { xMean[j] = xMean[j] / totWeights; if(totWeights > 1) xSD[j] = Math.sqrt(Math.abs(xSD[j] - totWeights*xMean[j]*xMean[j])/(totWeights-1)); else xSD[j] = 0; } if (m_Debug) { // Output stats about input data System.out.println("Descriptives..."); for (int m = 0; m <= nK; m++) System.out.println(sY[m] + " cases have class " + m); System.out.println("\n Variable Avg SD "); for (int j = 1; j <= nR; j++) System.out.println(Utils.doubleToString(j,8,4) + Utils.doubleToString(xMean[j], 10, 4) + Utils.doubleToString(xSD[j], 10, 4) ); } // Normalise input data for (int i = 0; i < nC; i++) { for (int j = 0; j <= nR; j++) { if (xSD[j] != 0) { m_Data[i][j] = (m_Data[i][j] - xMean[j]) / xSD[j]; } } } if (m_Debug) { System.out.println("\nIteration History..." ); } double x[] = new double[(nR+1)*nK]; double[][] b = new double[2][x.length]; // Boundary constraints, N/A here // Initialize for(int p=0; p<nK; p++){ int offset=p*(nR+1); x[offset] = Math.log(sY[p]+1.0) - Math.log(sY[nK]+1.0); // Null model b[0][offset] = Double.NaN; b[1][offset] = Double.NaN; for (int q=1; q <= nR; q++){ x[offset+q] = 0.0; b[0][offset+q] = Double.NaN; b[1][offset+q] = Double.NaN; } } OptObject oO = new OptObject(); oO.setWeights(weights); oO.setClassLabels(Y); Optimization opt = null; if (m_useConjugateGradientDescent) { opt = new OptEngCG(oO); } else { opt = new OptEng(oO); } opt.setDebug(m_Debug); if(m_MaxIts == -1){ // Search until convergence x = opt.findArgmin(x, b); while(x==null){ x = opt.getVarbValues(); if (m_Debug) System.out.println("First set of iterations finished, not enough!"); x = opt.findArgmin(x, b); } if (m_Debug) System.out.println(" -------------<Converged>--------------"); } else{ opt.setMaxIteration(m_MaxIts); x = opt.findArgmin(x, b); if(x==null) // Not enough, but use the current value x = opt.getVarbValues(); } m_LL = -opt.getMinFunction(); // Log-likelihood // Don't need data matrix anymore m_Data = null; // Convert coefficients back to non-normalized attribute units for(int i=0; i < nK; i++){ m_Par[0][i] = x[i*(nR+1)]; for(int j = 1; j <= nR; j++) { m_Par[j][i] = x[i*(nR+1)+j]; if (xSD[j] != 0) { m_Par[j][i] /= xSD[j]; m_Par[0][i] -= m_Par[j][i] * xMean[j]; } } } } /** * Computes the distribution for a given instance * * @param instance the instance for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double [] distributionForInstance(Instance instance) throws Exception { m_ReplaceMissingValues.input(instance); instance = m_ReplaceMissingValues.output(); m_AttFilter.input(instance); instance = m_AttFilter.output(); m_NominalToBinary.input(instance); instance = m_NominalToBinary.output(); // Extract the predictor columns into an array double [] instDat = new double [m_NumPredictors + 1]; int j = 1; instDat[0] = 1; for (int k = 0; k <= m_NumPredictors; k++) { if (k != m_ClassIndex) { instDat[j++] = instance.value(k); } } double [] distribution = evaluateProbability(instDat); return distribution; } /** * Compute the posterior distribution using optimized parameter values * and the testing instance. * @param data the testing instance * @return the posterior probability distribution */ private double[] evaluateProbability(double[] data){ double[] prob = new double[m_NumClasses], v = new double[m_NumClasses]; // Log-posterior before normalizing for(int j = 0; j < m_NumClasses-1; j++){ for(int k = 0; k <= m_NumPredictors; k++){ v[j] += m_Par[k][j] * data[k]; } } v[m_NumClasses-1] = 0; // Do so to avoid scaling problems for(int m=0; m < m_NumClasses; m++){ double sum = 0; for(int n=0; n < m_NumClasses-1; n++) sum += Math.exp(v[n] - v[m]); prob[m] = 1 / (sum + Math.exp(-v[m])); } return prob; } /** * Returns the coefficients for this logistic model. * The first dimension indexes the attributes, and * the second the classes. * * @return the coefficients for this logistic model */ public double [][] coefficients() { return m_Par; } /** * Gets a string describing the classifier. * * @return a string describing the classifer built. */ public String toString() { StringBuffer temp = new StringBuffer(); String result = ""; temp.append("Logistic Regression with ridge parameter of " + m_Ridge); if (m_Par == null) { return result + ": No model built yet."; } // find longest attribute name int attLength = 0; for (int i = 0; i < m_structure.numAttributes(); i++) { if (i != m_structure.classIndex() && m_structure.attribute(i).name().length() > attLength) { attLength = m_structure.attribute(i).name().length(); } } if ("Intercept".length() > attLength) { attLength = "Intercept".length(); } if ("Variable".length() > attLength) { attLength = "Variable".length(); } attLength += 2; int colWidth = 0; // check length of class names for (int i = 0; i < m_structure.classAttribute().numValues() - 1; i++) { if (m_structure.classAttribute().value(i).length() > colWidth) { colWidth = m_structure.classAttribute().value(i).length(); } } // check against coefficients and odds ratios for (int j = 1; j <= m_NumPredictors; j++) { for (int k = 0; k < m_NumClasses - 1; k++) { if (Utils.doubleToString(m_Par[j][k], 12, 4).trim().length() > colWidth) { colWidth = Utils.doubleToString(m_Par[j][k], 12, 4).trim().length(); } double ORc = Math.exp(m_Par[j][k]); String t = " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4)); if (t.trim().length() > colWidth) { colWidth = t.trim().length(); } } } if ("Class".length() > colWidth) { colWidth = "Class".length(); } colWidth += 2; temp.append("\nCoefficients...\n"); temp.append(Utils.padLeft(" ", attLength) + Utils.padLeft("Class", colWidth) + "\n"); temp.append(Utils.padRight("Variable", attLength)); for (int i = 0; i < m_NumClasses - 1; i++) { String className = m_structure.classAttribute().value(i); temp.append(Utils.padLeft(className, colWidth)); } temp.append("\n"); int separatorL = attLength + ((m_NumClasses - 1) * colWidth); for (int i = 0; i < separatorL; i++) { temp.append("="); } temp.append("\n"); int j = 1; for (int i = 0; i < m_structure.numAttributes(); i++) { if (i != m_structure.classIndex()) { temp.append(Utils.padRight(m_structure.attribute(i).name(), attLength)); for (int k = 0; k < m_NumClasses-1; k++) { temp.append(Utils.padLeft(Utils.doubleToString(m_Par[j][k], 12, 4).trim(), colWidth)); } temp.append("\n"); j++; } } temp.append(Utils.padRight("Intercept", attLength)); for (int k = 0; k < m_NumClasses-1; k++) { temp.append(Utils.padLeft(Utils.doubleToString(m_Par[0][k], 10, 4).trim(), colWidth)); } temp.append("\n"); temp.append("\n\nOdds Ratios...\n"); temp.append(Utils.padLeft(" ", attLength) + Utils.padLeft("Class", colWidth) + "\n"); temp.append(Utils.padRight("Variable", attLength)); for (int i = 0; i < m_NumClasses - 1; i++) { String className = m_structure.classAttribute().value(i); temp.append(Utils.padLeft(className, colWidth)); } temp.append("\n"); for (int i = 0; i < separatorL; i++) { temp.append("="); } temp.append("\n"); j = 1; for (int i = 0; i < m_structure.numAttributes(); i++) { if (i != m_structure.classIndex()) { temp.append(Utils.padRight(m_structure.attribute(i).name(), attLength)); for (int k = 0; k < m_NumClasses-1; k++) { double ORc = Math.exp(m_Par[j][k]); String ORs = " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4)); temp.append(Utils.padLeft(ORs.trim(), colWidth)); } temp.append("\n"); j++; } } return temp.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9785 $"); } protected int m_numModels = 0; /** * Aggregate an object with this one * * @param toAggregate the object to aggregate * @return the result of aggregation * @throws Exception if the supplied object can't be aggregated for some * reason */ @Override public Logistic aggregate(Logistic toAggregate) throws Exception { if (m_numModels == Integer.MIN_VALUE) { throw new Exception( "Can't aggregate further - model has already been " + "aggregated and finalized"); } if (m_Par == null) { throw new Exception("No model built yet, can't aggregate"); } if (!m_structure.equalHeaders(toAggregate.m_structure)) { throw new Exception("Can't aggregate - data headers dont match: " + m_structure.equalHeadersMsg(toAggregate.m_structure)); } for (int i = 0; i < m_Par.length; i++) { for (int j = 0; j < m_Par[i].length; j++) { m_Par[i][j] += toAggregate.m_Par[i][j]; } } m_numModels++; return this; } /** * Call to complete the aggregation process. Allows implementers to do any * final processing based on how many objects were aggregated. * * @throws Exception if the aggregation can't be finalized for some reason */ @Override public void finalizeAggregation() throws Exception { if (m_numModels == Integer.MIN_VALUE) { throw new Exception("Aggregation has already been finalized"); } if (m_numModels == 0) { throw new Exception("Unable to finalize aggregation - " + "haven't seen any models to aggregate"); } for (int i = 0; i < m_Par.length; i++) { for (int j = 0; j < m_Par[i].length; j++) { m_Par[i][j] /= (m_numModels + 1); } } // aggregation complete m_numModels = Integer.MIN_VALUE; } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String [] argv) { runClassifier(new Logistic(), argv); } }