/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * LMTNode.java * Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.trees.lmt; import java.util.Collections; import java.util.Comparator; import java.util.Vector; import weka.classifiers.Evaluation; import weka.classifiers.functions.SimpleLinearRegression; import weka.classifiers.trees.j48.ClassifierSplitModel; import weka.classifiers.trees.j48.ModelSelection; import weka.core.Instance; import weka.core.Instances; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.filters.Filter; import weka.filters.supervised.attribute.NominalToBinary; /** * Auxiliary class for list of LMTNodes */ class CompareNode implements Comparator, RevisionHandler { /** * Compares its two arguments for order. * * @param o1 first object * @param o2 second object * @return a negative integer, zero, or a positive integer as the first * argument is less than, equal to, or greater than the second. */ public int compare(Object o1, Object o2) { if ( ((LMTNode)o1).m_alpha < ((LMTNode)o2).m_alpha) return -1; if ( ((LMTNode)o1).m_alpha > ((LMTNode)o2).m_alpha) return 1; return 0; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } } /** * Class for logistic model tree structure. * * * @author Niels Landwehr * @author Marc Sumner * @version $Revision: 8034 $ */ public class LMTNode extends LogisticBase { /** for serialization */ static final long serialVersionUID = 1862737145870398755L; /** Total number of training instances. */ protected double m_totalInstanceWeight; /** Node id*/ protected int m_id; /** ID of logistic model at leaf*/ protected int m_leafModelNum; /** Alpha-value (for pruning) at the node*/ public double m_alpha; /** Weighted number of training examples currently misclassified by the logistic model at the node*/ public double m_numIncorrectModel; /** Weighted number of training examples currently misclassified by the subtree rooted at the node*/ public double m_numIncorrectTree; /**minimum number of instances at which a node is considered for splitting*/ protected int m_minNumInstances; /**ModelSelection object (for splitting)*/ protected ModelSelection m_modelSelection; /**Filter to convert nominal attributes to binary*/ protected NominalToBinary m_nominalToBinary; /**Simple regression functions fit by LogitBoost at higher levels in the tree*/ protected SimpleLinearRegression[][] m_higherRegressions; /**Number of simple regression functions fit by LogitBoost at higher levels in the tree*/ protected int m_numHigherRegressions = 0; /**Number of folds for CART pruning*/ protected static int m_numFoldsPruning = 5; /**Use heuristic that determines the number of LogitBoost iterations only once in the beginning? */ protected boolean m_fastRegression; /**Number of instances at the node*/ protected int m_numInstances; /**The ClassifierSplitModel (for splitting)*/ protected ClassifierSplitModel m_localModel; /**Array of children of the node*/ protected LMTNode[] m_sons; /**True if node is leaf*/ protected boolean m_isLeaf; /** * Constructor for logistic model tree node. * * @param modelSelection selection method for local splitting model * @param numBoostingIterations sets the numBoostingIterations parameter * @param fastRegression sets the fastRegression parameter * @param errorOnProbabilities Use error on probabilities for stopping criterion of LogitBoost? * @param minNumInstances minimum number of instances at which a node is considered for splitting */ public LMTNode(ModelSelection modelSelection, int numBoostingIterations, boolean fastRegression, boolean errorOnProbabilities, int minNumInstances, double weightTrimBeta, boolean useAIC) { m_modelSelection = modelSelection; m_fixedNumIterations = numBoostingIterations; m_fastRegression = fastRegression; m_errorOnProbabilities = errorOnProbabilities; m_minNumInstances = minNumInstances; m_maxIterations = 200; setWeightTrimBeta(weightTrimBeta); setUseAIC(useAIC); } /** * Method for building a logistic model tree (only called for the root node). * Grows an initial logistic model tree and prunes it back using the CART pruning scheme. * * @param data the data to train with * @throws Exception if something goes wrong */ public void buildClassifier(Instances data) throws Exception{ //heuristic to avoid cross-validating the number of LogitBoost iterations //at every node: build standalone logistic model and take its optimum number //of iteration everywhere in the tree. if (m_fastRegression && (m_fixedNumIterations < 0)) m_fixedNumIterations = tryLogistic(data); //Need to cross-validate alpha-parameter for CART-pruning Instances cvData = new Instances(data); cvData.stratify(m_numFoldsPruning); double[][] alphas = new double[m_numFoldsPruning][]; double[][] errors = new double[m_numFoldsPruning][]; for (int i = 0; i < m_numFoldsPruning; i++) { //for every fold, grow tree on training set... Instances train = cvData.trainCV(m_numFoldsPruning, i); Instances test = cvData.testCV(m_numFoldsPruning, i); buildTree(train, null, train.numInstances() , 0); int numNodes = getNumInnerNodes(); alphas[i] = new double[numNodes + 2]; errors[i] = new double[numNodes + 2]; //... then prune back and log alpha-values and errors on test set prune(alphas[i], errors[i], test); } //build tree using all the data buildTree(data, null, data.numInstances(), 0); int numNodes = getNumInnerNodes(); double[] treeAlphas = new double[numNodes + 2]; //prune back and log alpha-values int iterations = prune(treeAlphas, null, null); double[] treeErrors = new double[numNodes + 2]; for (int i = 0; i <= iterations; i++){ //compute midpoint alphas double alpha = Math.sqrt(treeAlphas[i] * treeAlphas[i+1]); double error = 0; //compute error estimate for final trees from the midpoint-alphas and the error estimates gotten in //the cross-validation for (int k = 0; k < m_numFoldsPruning; k++) { int l = 0; while (alphas[k][l] <= alpha) l++; error += errors[k][l - 1]; } treeErrors[i] = error; } //find best alpha int best = -1; double bestError = Double.MAX_VALUE; for (int i = iterations; i >= 0; i--) { if (treeErrors[i] < bestError) { bestError = treeErrors[i]; best = i; } } double bestAlpha = Math.sqrt(treeAlphas[best] * treeAlphas[best + 1]); //"unprune" final tree (faster than regrowing it) unprune(); //CART-prune it with best alpha prune(bestAlpha); cleanup(); } /** * Method for building the tree structure. * Builds a logistic model, splits the node and recursively builds tree for child nodes. * @param data the training data passed on to this node * @param higherRegressions An array of regression functions produced by LogitBoost at higher * levels in the tree. They represent a logistic regression model that is refined locally * at this node. * @param totalInstanceWeight the total number of training examples * @param higherNumParameters effective number of parameters in the logistic regression model built * in parent nodes * @throws Exception if something goes wrong */ public void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight, double higherNumParameters) throws Exception{ //save some stuff m_totalInstanceWeight = totalInstanceWeight; m_train = new Instances(data); m_isLeaf = true; m_sons = null; m_numInstances = m_train.numInstances(); m_numClasses = m_train.numClasses(); //init m_numericData = getNumericData(m_train); m_numericDataHeader = new Instances(m_numericData, 0); m_regressions = initRegressions(); m_numRegressions = 0; if (higherRegressions != null) m_higherRegressions = higherRegressions; else m_higherRegressions = new SimpleLinearRegression[m_numClasses][0]; m_numHigherRegressions = m_higherRegressions[0].length; m_numParameters = higherNumParameters; //build logistic model if (m_numInstances >= m_numFoldsBoosting) { if (m_fixedNumIterations > 0){ performBoosting(m_fixedNumIterations); } else if (getUseAIC()) { performBoostingInfCriterion(); } else { performBoostingCV(); } } m_numParameters += m_numRegressions; //only keep the simple regression functions that correspond to the selected number of LogitBoost iterations m_regressions = selectRegressions(m_regressions); boolean grow; //split node if more than minNumInstances... if (m_numInstances > m_minNumInstances) { //split node: either splitting on class value (a la C4.5) or splitting on residuals if (m_modelSelection instanceof ResidualModelSelection) { //need ps/Ys/Zs/weights double[][] probs = getProbs(getFs(m_numericData)); double[][] trainYs = getYs(m_train); double[][] dataZs = getZs(probs, trainYs); double[][] dataWs = getWs(probs, trainYs); m_localModel = ((ResidualModelSelection)m_modelSelection).selectModel(m_train, dataZs, dataWs); } else { m_localModel = m_modelSelection.selectModel(m_train); } //... and valid split found grow = (m_localModel.numSubsets() > 1); } else { grow = false; } if (grow) { //create and build children of node m_isLeaf = false; Instances[] localInstances = m_localModel.split(m_train); m_sons = new LMTNode[m_localModel.numSubsets()]; for (int i = 0; i < m_sons.length; i++) { m_sons[i] = new LMTNode(m_modelSelection, m_fixedNumIterations, m_fastRegression, m_errorOnProbabilities,m_minNumInstances, getWeightTrimBeta(), getUseAIC()); //the "higherRegressions" (partial logistic model fit at higher levels in the tree) passed //on to the children are the "higherRegressions" at this node plus the regressions added //at this node (m_regressions). m_sons[i].buildTree(localInstances[i], mergeArrays(m_regressions, m_higherRegressions), m_totalInstanceWeight, m_numParameters); localInstances[i] = null; } } } /** * Prunes a logistic model tree using the CART pruning scheme, given a * cost-complexity parameter alpha. * * @param alpha the cost-complexity measure * @throws Exception if something goes wrong */ public void prune(double alpha) throws Exception { Vector nodeList; CompareNode comparator = new CompareNode(); //determine training error of logistic models and subtrees, and calculate alpha-values from them modelErrors(); treeErrors(); calculateAlphas(); //get list of all inner nodes in the tree nodeList = getNodes(); boolean prune = (nodeList.size() > 0); while (prune) { //select node with minimum alpha LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator); //want to prune if its alpha is smaller than alpha if (nodeToPrune.m_alpha > alpha) break; nodeToPrune.m_isLeaf = true; nodeToPrune.m_sons = null; //update tree errors and alphas treeErrors(); calculateAlphas(); nodeList = getNodes(); prune = (nodeList.size() > 0); } } /** * Method for performing one fold in the cross-validation of the cost-complexity parameter. * Generates a sequence of alpha-values with error estimates for the corresponding (partially pruned) * trees, given the test set of that fold. * @param alphas array to hold the generated alpha-values * @param errors array to hold the corresponding error estimates * @param test test set of that fold (to obtain error estimates) * @throws Exception if something goes wrong */ public int prune(double[] alphas, double[] errors, Instances test) throws Exception { Vector nodeList; CompareNode comparator = new CompareNode(); //determine training error of logistic models and subtrees, and calculate alpha-values from them modelErrors(); treeErrors(); calculateAlphas(); //get list of all inner nodes in the tree nodeList = getNodes(); boolean prune = (nodeList.size() > 0); //alpha_0 is always zero (unpruned tree) alphas[0] = 0; Evaluation eval; //error of unpruned tree if (errors != null) { eval = new Evaluation(test); eval.evaluateModel(this, test); errors[0] = eval.errorRate(); } int iteration = 0; while (prune) { iteration++; //get node with minimum alpha LMTNode nodeToPrune = (LMTNode)Collections.min(nodeList,comparator); nodeToPrune.m_isLeaf = true; //Do not set m_sons null, want to unprune //get alpha-value of node alphas[iteration] = nodeToPrune.m_alpha; //log error if (errors != null) { eval = new Evaluation(test); eval.evaluateModel(this, test); errors[iteration] = eval.errorRate(); } //update errors/alphas treeErrors(); calculateAlphas(); nodeList = getNodes(); prune = (nodeList.size() > 0); } //set last alpha 1 to indicate end alphas[iteration + 1] = 1.0; return iteration; } /** *Method to "unprune" a logistic model tree. *Sets all leaf-fields to false. *Faster than re-growing the tree because the logistic models do not have to be fit again. */ protected void unprune() { if (m_sons != null) { m_isLeaf = false; for (int i = 0; i < m_sons.length; i++) m_sons[i].unprune(); } } /** *Determines the optimum number of LogitBoost iterations to perform by building a standalone logistic *regression function on the training data. Used for the heuristic that avoids cross-validating this *number again at every node. *@param data training instances for the logistic model *@throws Exception if something goes wrong */ protected int tryLogistic(Instances data) throws Exception{ //convert nominal attributes Instances filteredData = new Instances(data); NominalToBinary nominalToBinary = new NominalToBinary(); nominalToBinary.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, nominalToBinary); LogisticBase logistic = new LogisticBase(0,true,m_errorOnProbabilities); //limit LogitBoost to 200 iterations (speed) logistic.setMaxIterations(200); logistic.setWeightTrimBeta(getWeightTrimBeta()); // Not in Marc's code. Added by Eibe. logistic.setUseAIC(getUseAIC()); logistic.buildClassifier(filteredData); //return best number of iterations return logistic.getNumRegressions(); } /** * Method to count the number of inner nodes in the tree * @return the number of inner nodes */ public int getNumInnerNodes(){ if (m_isLeaf) return 0; int numNodes = 1; for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].getNumInnerNodes(); return numNodes; } /** * Returns the number of leaves in the tree. * Leaves are only counted if their logistic model has changed compared to the one of the parent node. * @return the number of leaves */ public int getNumLeaves(){ int numLeaves; if (!m_isLeaf) { numLeaves = 0; int numEmptyLeaves = 0; for (int i = 0; i < m_sons.length; i++) { numLeaves += m_sons[i].getNumLeaves(); if (m_sons[i].m_isLeaf && !m_sons[i].hasModels()) numEmptyLeaves++; } if (numEmptyLeaves > 1) { numLeaves -= (numEmptyLeaves - 1); } } else { numLeaves = 1; } return numLeaves; } /** *Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values. */ public void modelErrors() throws Exception{ Evaluation eval = new Evaluation(m_train); if (!m_isLeaf) { m_isLeaf = true; eval.evaluateModel(this, m_train); m_isLeaf = false; m_numIncorrectModel = eval.incorrect(); for (int i = 0; i < m_sons.length; i++) m_sons[i].modelErrors(); } else { eval.evaluateModel(this, m_train); m_numIncorrectModel = eval.incorrect(); } } /** *Updates the numIncorrectTree field for all nodes. This is needed for calculating the alpha-values. */ public void treeErrors(){ if (m_isLeaf) { m_numIncorrectTree = m_numIncorrectModel; } else { m_numIncorrectTree = 0; for (int i = 0; i < m_sons.length; i++) { m_sons[i].treeErrors(); m_numIncorrectTree += m_sons[i].m_numIncorrectTree; } } } /** *Updates the alpha field for all nodes. */ public void calculateAlphas() throws Exception { if (!m_isLeaf) { double errorDiff = m_numIncorrectModel - m_numIncorrectTree; if (errorDiff <= 0) { //split increases training error (should not normally happen). //prune it instantly. m_isLeaf = true; m_sons = null; m_alpha = Double.MAX_VALUE; } else { //compute alpha errorDiff /= m_totalInstanceWeight; m_alpha = errorDiff / (double)(getNumLeaves() - 1); for (int i = 0; i < m_sons.length; i++) m_sons[i].calculateAlphas(); } } else { //alpha = infinite for leaves (do not want to prune) m_alpha = Double.MAX_VALUE; } } /** * Merges two arrays of regression functions into one * @param a1 one array * @param a2 the other array * * @return an array that contains all entries from both input arrays */ protected SimpleLinearRegression[][] mergeArrays(SimpleLinearRegression[][] a1, SimpleLinearRegression[][] a2){ int numModels1 = a1[0].length; int numModels2 = a2[0].length; SimpleLinearRegression[][] result = new SimpleLinearRegression[m_numClasses][numModels1 + numModels2]; for (int i = 0; i < m_numClasses; i++) for (int j = 0; j < numModels1; j++) { result[i][j] = a1[i][j]; } for (int i = 0; i < m_numClasses; i++) for (int j = 0; j < numModels2; j++) result[i][j+numModels1] = a2[i][j]; return result; } /** * Return a list of all inner nodes in the tree * @return the list of nodes */ public Vector getNodes(){ Vector nodeList = new Vector(); getNodes(nodeList); return nodeList; } /** * Fills a list with all inner nodes in the tree * * @param nodeList the list to be filled */ public void getNodes(Vector nodeList) { if (!m_isLeaf) { nodeList.add(this); for (int i = 0; i < m_sons.length; i++) m_sons[i].getNodes(nodeList); } } /** * Returns a numeric version of a set of instances. * All nominal attributes are replaced by binary ones, and the class variable is replaced * by a pseudo-class variable that is used by LogitBoost. */ protected Instances getNumericData(Instances train) throws Exception{ Instances filteredData = new Instances(train); m_nominalToBinary = new NominalToBinary(); m_nominalToBinary.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, m_nominalToBinary); return super.getNumericData(filteredData); } /** * Computes the F-values of LogitBoost for an instance from the current logistic model at the node * Note that this also takes into account the (partial) logistic model fit at higher levels in * the tree. * @param instance the instance * @return the array of F-values */ protected double[] getFs(Instance instance) throws Exception{ double [] pred = new double [m_numClasses]; //Need to take into account partial model fit at higher levels in the tree (m_higherRegressions) //and the part of the model fit at this node (m_regressions). //Fs from m_regressions (use method of LogisticBase) double [] instanceFs = super.getFs(instance); //Fs from m_higherRegressions for (int i = 0; i < m_numHigherRegressions; i++) { double predSum = 0; for (int j = 0; j < m_numClasses; j++) { pred[j] = m_higherRegressions[j][i].classifyInstance(instance); predSum += pred[j]; } predSum /= m_numClasses; for (int j = 0; j < m_numClasses; j++) { instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1) / m_numClasses; } } return instanceFs; } /** *Returns true if the logistic regression model at this node has changed compared to the *one at the parent node. *@return whether it has changed */ public boolean hasModels() { return (m_numRegressions > 0); } /** * Returns the class probabilities for an instance according to the logistic model at the node. * @param instance the instance * @return the array of probabilities */ public double[] modelDistributionForInstance(Instance instance) throws Exception { //make copy and convert nominal attributes instance = (Instance)instance.copy(); m_nominalToBinary.input(instance); instance = m_nominalToBinary.output(); //saet numeric pseudo-class instance.setDataset(m_numericDataHeader); return probs(getFs(instance)); } /** * Returns the class probabilities for an instance given by the logistic model tree. * @param instance the instance * @return the array of probabilities */ public double[] distributionForInstance(Instance instance) throws Exception { double[] probs; if (m_isLeaf) { //leaf: use logistic model probs = modelDistributionForInstance(instance); } else { //sort into appropiate child node int branch = m_localModel.whichSubset(instance); probs = m_sons[branch].distributionForInstance(instance); } return probs; } /** * Returns the number of leaves (normal count). * @return the number of leaves */ public int numLeaves() { if (m_isLeaf) return 1; int numLeaves = 0; for (int i = 0; i < m_sons.length; i++) numLeaves += m_sons[i].numLeaves(); return numLeaves; } /** * Returns the number of nodes. * @return the number of nodes */ public int numNodes() { if (m_isLeaf) return 1; int numNodes = 1; for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].numNodes(); return numNodes; } /** * Returns a description of the logistic model tree (tree structure and logistic models) * @return describing string */ public String toString(){ //assign numbers to logistic regression functions at leaves assignLeafModelNumbers(0); try{ StringBuffer text = new StringBuffer(); if (m_isLeaf) { text.append(": "); text.append("LM_"+m_leafModelNum+":"+getModelParameters()); } else { dumpTree(0,text); } text.append("\n\nNumber of Leaves : \t"+numLeaves()+"\n"); text.append("\nSize of the Tree : \t"+numNodes()+"\n"); //This prints logistic models after the tree, comment out if only tree should be printed text.append(modelsToString()); return text.toString(); } catch (Exception e){ return "Can't print logistic model tree"; } } /** * Returns a string describing the number of LogitBoost iterations performed at this node, the total number * of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number * of training examples at this node. * @return the describing string */ public String getModelParameters(){ StringBuffer text = new StringBuffer(); int numModels = m_numRegressions+m_numHigherRegressions; text.append(m_numRegressions+"/"+numModels+" ("+m_numInstances+")"); return text.toString(); } /** * Help method for printing tree structure. * * @throws Exception if something goes wrong */ protected void dumpTree(int depth,StringBuffer text) throws Exception { for (int i = 0; i < m_sons.length; i++) { text.append("\n"); for (int j = 0; j < depth; j++) text.append("| "); text.append(m_localModel.leftSide(m_train)); text.append(m_localModel.rightSide(i, m_train)); if (m_sons[i].m_isLeaf) { text.append(": "); text.append("LM_"+m_sons[i].m_leafModelNum+":"+m_sons[i].getModelParameters()); }else m_sons[i].dumpTree(depth+1,text); } } /** * Assigns unique IDs to all nodes in the tree */ public int assignIDs(int lastID) { int currLastID = lastID + 1; m_id = currLastID; if (m_sons != null) { for (int i = 0; i < m_sons.length; i++) { currLastID = m_sons[i].assignIDs(currLastID); } } return currLastID; } /** * Assigns numbers to the logistic regression models at the leaves of the tree */ public int assignLeafModelNumbers(int leafCounter) { if (!m_isLeaf) { m_leafModelNum = 0; for (int i = 0; i < m_sons.length; i++){ leafCounter = m_sons[i].assignLeafModelNumbers(leafCounter); } } else { leafCounter++; m_leafModelNum = leafCounter; } return leafCounter; } /** * Returns an array containing the coefficients of the logistic regression function at this node. * @return the array of coefficients, first dimension is the class, second the attribute. */ protected double[][] getCoefficients(){ //Need to take into account partial model fit at higher levels in the tree (m_higherRegressions) //and the part of the model fit at this node (m_regressions). //get coefficients from m_regressions: use method of LogisticBase double[][] coefficients = super.getCoefficients(); //get coefficients from m_higherRegressions: double constFactor = (double)(m_numClasses - 1) / (double)m_numClasses; // (J - 1)/J for (int j = 0; j < m_numClasses; j++) { for (int i = 0; i < m_numHigherRegressions; i++) { double slope = m_higherRegressions[j][i].getSlope(); double intercept = m_higherRegressions[j][i].getIntercept(); int attribute = m_higherRegressions[j][i].getAttributeIndex(); coefficients[j][0] += constFactor * intercept; coefficients[j][attribute + 1] += constFactor * slope; } } return coefficients; } /** * Returns a string describing the logistic regression function at the node. */ public String modelsToString(){ StringBuffer text = new StringBuffer(); if (m_isLeaf) { text.append("LM_"+m_leafModelNum+":"+super.toString()); } else { for (int i = 0; i < m_sons.length; i++) { text.append("\n"+m_sons[i].modelsToString()); } } return text.toString(); } /** * Returns graph describing the tree. * * @throws Exception if something goes wrong */ public String graph() throws Exception { StringBuffer text = new StringBuffer(); assignIDs(-1); assignLeafModelNumbers(0); text.append("digraph LMTree {\n"); if (m_isLeaf) { text.append("N" + m_id + " [label=\"LM_"+m_leafModelNum+":"+getModelParameters()+"\" " + "shape=box style=filled"); text.append("]\n"); }else { text.append("N" + m_id + " [label=\"" + m_localModel.leftSide(m_train) + "\" "); text.append("]\n"); graphTree(text); } return text.toString() +"}\n"; } /** * Helper function for graph description of tree * * @throws Exception if something goes wrong */ private void graphTree(StringBuffer text) throws Exception { for (int i = 0; i < m_sons.length; i++) { text.append("N" + m_id + "->" + "N" + m_sons[i].m_id + " [label=\"" + m_localModel.rightSide(i,m_train).trim() + "\"]\n"); if (m_sons[i].m_isLeaf) { text.append("N" +m_sons[i].m_id + " [label=\"LM_"+m_sons[i].m_leafModelNum+":"+ m_sons[i].getModelParameters()+"\" " + "shape=box style=filled"); text.append("]\n"); } else { text.append("N" + m_sons[i].m_id + " [label=\""+m_sons[i].m_localModel.leftSide(m_train) + "\" "); text.append("]\n"); m_sons[i].graphTree(text); } } } /** * Cleanup in order to save memory. */ public void cleanup() { super.cleanup(); if (!m_isLeaf) { for (int i = 0; i < m_sons.length; i++) m_sons[i].cleanup(); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } }