/* * Copyright (c) 2016 Martin Davis. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v. 1.0 which accompanies this distribution. * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * * http://www.eclipse.org/org/documents/edl-v10.php. */ package test.jts.perf.math; import org.locationtech.jts.geom.Coordinate; import org.locationtech.jts.geom.Triangle; import org.locationtech.jts.geom.impl.CoordinateArraySequence; import org.locationtech.jts.io.WKTWriter; import org.locationtech.jts.math.DD; /** * Algorithms for computing values and predicates * associated with triangles. * For some algorithms extended-precision * versions are provided, which are more robust * (i.e. they produce correct answers in more cases). * These are used in triangulation algorithms. * * @author Martin Davis * */ public class TriPredicate { /** * Tests if a point is inside the circle defined by the points a, b, c. * This test uses simple * double-precision arithmetic, and thus may not be robust. * * @param a a vertex of the triangle * @param b a vertex of the triangle * @param c a vertex of the triangle * @param p the point to test * @return true if this point is inside the circle defined by the points a, b, c */ public static boolean isInCircle( Coordinate a, Coordinate b, Coordinate c, Coordinate p) { boolean isInCircle = (a.x * a.x + a.y * a.y) * triArea(b, c, p) - (b.x * b.x + b.y * b.y) * triArea(a, c, p) + (c.x * c.x + c.y * c.y) * triArea(a, b, p) - (p.x * p.x + p.y * p.y) * triArea(a, b, c) > 0; return isInCircle; } /** * Computes twice the area of the oriented triangle (a, b, c), i.e., the area is positive if the * triangle is oriented counterclockwise. * * @param a a vertex of the triangle * @param b a vertex of the triangle * @param c a vertex of the triangle */ private static double triArea(Coordinate a, Coordinate b, Coordinate c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } /** * Tests if a point is inside the circle defined by the points a, b, c. * This test uses robust computation. * * @param a a vertex of the triangle * @param b a vertex of the triangle * @param c a vertex of the triangle * @param p the point to test * @return true if this point is inside the circle defined by the points a, b, c */ public static boolean isInCircleRobust( Coordinate a, Coordinate b, Coordinate c, Coordinate p) { //checkRobustInCircle(a, b, c, p); return isInCircleDD(a, b, c, p); } /** * Tests if a point is inside the circle defined by the points a, b, c. * The computation uses {@link DD} arithmetic for robustness. * * @param a a vertex of the triangle * @param b a vertex of the triangle * @param c a vertex of the triangle * @param p the point to test * @return true if this point is inside the circle defined by the points a, b, c */ public static boolean isInCircleDD( Coordinate a, Coordinate b, Coordinate c, Coordinate p) { DD px = new DD(p.x); DD py = new DD(p.y); DD ax = new DD(a.x); DD ay = new DD(a.y); DD bx = new DD(b.x); DD by = new DD(b.y); DD cx = new DD(c.x); DD cy = new DD(c.y); DD aTerm = (ax.multiply(ax).add(ay.multiply(ay))) .multiply(triAreaDD(bx, by, cx, cy, px, py)); DD bTerm = (bx.multiply(bx).add(by.multiply(by))) .multiply(triAreaDD(ax, ay, cx, cy, px, py)); DD cTerm = (cx.multiply(cx).add(cy.multiply(cy))) .multiply(triAreaDD(ax, ay, bx, by, px, py)); DD pTerm = (px.multiply(px).add(py.multiply(py))) .multiply(triAreaDD(ax, ay, bx, by, cx, cy)); DD sum = aTerm.subtract(bTerm).add(cTerm).subtract(pTerm); boolean isInCircle = sum.doubleValue() > 0; return isInCircle; } public static boolean isInCircleDD2( Coordinate a, Coordinate b, Coordinate c, Coordinate p) { DD aTerm = (DD.sqr(a.x).selfAdd(DD.sqr(a.y))) .selfMultiply(triAreaDD2(b, c, p)); DD bTerm = (DD.sqr(b.x).selfAdd(DD.sqr(b.y))) .selfMultiply(triAreaDD2(a, c, p)); DD cTerm = (DD.sqr(c.x).selfAdd(DD.sqr(c.y))) .selfMultiply(triAreaDD2(a, b, p)); DD pTerm = (DD.sqr(p.x).selfAdd(DD.sqr(p.y))) .selfMultiply(triAreaDD2(a, b, c)); DD sum = aTerm.selfSubtract(bTerm).selfAdd(cTerm).selfSubtract(pTerm); boolean isInCircle = sum.doubleValue() > 0; return isInCircle; } public static boolean isInCircleDD3( Coordinate a, Coordinate b, Coordinate c, Coordinate p) { DD adx = DD.valueOf(a.x).selfSubtract(p.x); DD ady = DD.valueOf(a.y).selfSubtract(p.y); DD bdx = DD.valueOf(b.x).selfSubtract(p.x); DD bdy = DD.valueOf(b.y).selfSubtract(p.y); DD cdx = DD.valueOf(c.x).selfSubtract(p.x); DD cdy = DD.valueOf(c.y).selfSubtract(p.y); DD abdet = adx.multiply(bdy).selfSubtract(bdx.multiply(ady)); DD bcdet = bdx.multiply(cdy).selfSubtract(cdx.multiply(bdy)); DD cadet = cdx.multiply(ady).selfSubtract(adx.multiply(cdy)); DD alift = adx.multiply(adx).selfSubtract(ady.multiply(ady)); DD blift = bdx.multiply(bdx).selfSubtract(bdy.multiply(bdy)); DD clift = cdx.multiply(cdx).selfSubtract(cdy.multiply(cdy)); DD sum = alift.selfMultiply(bcdet) .selfAdd(blift.selfMultiply(cadet)) .selfAdd(clift.selfMultiply(abdet)); boolean isInCircle = sum.doubleValue() > 0; return isInCircle; } /** * Computes twice the area of the oriented triangle (a, b, c), i.e., the area * is positive if the triangle is oriented counterclockwise. * The computation uses {@link DD} arithmetic for robustness. * * @param ax the x ordinate of a vertex of the triangle * @param ay the y ordinate of a vertex of the triangle * @param bx the x ordinate of a vertex of the triangle * @param by the y ordinate of a vertex of the triangle * @param cx the x ordinate of a vertex of the triangle * @param cy the y ordinate of a vertex of the triangle */ public static DD triAreaDD(DD ax, DD ay, DD bx, DD by, DD cx, DD cy) { return (bx.subtract(ax).multiply(cy.subtract(ay)).subtract(by.subtract(ay) .multiply(cx.subtract(ax)))); } public static DD triAreaDD2( Coordinate a, Coordinate b, Coordinate c) { DD t1 = DD.valueOf(b.x).selfSubtract(a.x) .selfMultiply( DD.valueOf(c.y).selfSubtract(a.y)); DD t2 = DD.valueOf(b.y).selfSubtract(a.y) .selfMultiply( DD.valueOf(c.x).selfSubtract(a.x)); return t1.selfSubtract(t2); } /** * Computes the inCircle test using distance from the circumcentre. * Uses standard double-precision arithmetic. * <p> * In general this doesn't * appear to be any more robust than the standard calculation. However, there * is at least one case where the test point is far enough from the * circumcircle that this test gives the correct answer. * <pre> * LINESTRING * (1507029.9878 518325.7547, 1507022.1120341457 518332.8225183258, * 1507029.9833 518325.7458, 1507029.9896965567 518325.744909031) * </pre> * * @param a a vertex of the triangle * @param b a vertex of the triangle * @param c a vertex of the triangle * @param p the point to test * @return true if this point is inside the circle defined by the points a, b, c */ public static boolean isInCircleCC(Coordinate a, Coordinate b, Coordinate c, Coordinate p) { Coordinate cc = Triangle.circumcentre(a, b, c); double ccRadius = a.distance(cc); double pRadiusDiff = p.distance(cc) - ccRadius; return pRadiusDiff <= 0; } /** * Checks if the computed value for isInCircle is correct, using * double-double precision arithmetic. * * @param a a vertex of the triangle * @param b a vertex of the triangle * @param c a vertex of the triangle * @param p the point to test */ private static void checkRobustInCircle(Coordinate a, Coordinate b, Coordinate c, Coordinate p) { boolean nonRobustInCircle = isInCircle(a, b, c, p); boolean isInCircleDD = TriPredicate.isInCircleDD(a, b, c, p); boolean isInCircleCC = TriPredicate.isInCircleCC(a, b, c, p); Coordinate circumCentre = Triangle.circumcentre(a, b, c); System.out.println("p radius diff a = " + Math.abs(p.distance(circumCentre) - a.distance(circumCentre)) / a.distance(circumCentre)); if (nonRobustInCircle != isInCircleDD || nonRobustInCircle != isInCircleCC) { System.out.println("inCircle robustness failure (double result = " + nonRobustInCircle + ", DD result = " + isInCircleDD + ", CC result = " + isInCircleCC + ")"); System.out.println(WKTWriter.toLineString(new CoordinateArraySequence( new Coordinate[] { a, b, c, p }))); System.out.println("Circumcentre = " + WKTWriter.toPoint(circumCentre) + " radius = " + a.distance(circumCentre)); System.out.println("p radius diff a = " + Math.abs(p.distance(circumCentre)/a.distance(circumCentre) - 1)); System.out.println("p radius diff b = " + Math.abs(p.distance(circumCentre)/b.distance(circumCentre) - 1)); System.out.println("p radius diff c = " + Math.abs(p.distance(circumCentre)/c.distance(circumCentre) - 1)); System.out.println(); } } }