/* * Copyright (c) 2016 Vivid Solutions. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v. 1.0 which accompanies this distribution. * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * * http://www.eclipse.org/org/documents/edl-v10.php. */ package org.locationtech.jts.algorithm; import org.locationtech.jts.geom.Coordinate; /** * @version 1.7 */ /** * Implements an algorithm to compute the * sign of a 2x2 determinant for double precision values robustly. * It is a direct translation of code developed by Olivier Devillers. * <p> * The original code carries the following copyright notice: * * <pre> ************************************************************************* * Author : Olivier Devillers * Olivier.Devillers@sophia.inria.fr * http:/www.inria.fr:/prisme/personnel/devillers/anglais/determinant.html * * Olivier Devillers has allowed the code to be distributed under * the LGPL (2012-02-16) saying "It is ok for LGPL distribution." * ************************************************************************** * ************************************************************************** * Copyright (c) 1995 by INRIA Prisme Project * BP 93 06902 Sophia Antipolis Cedex, France. * All rights reserved ************************************************************************** * </pre> * * @version 1.7 */ public class RobustDeterminant { //public static int callCount = 0; // debugging only /* // test point to allow injecting test code public static int signOfDet2x2(double x1, double y1, double x2, double y2) { int d1 = originalSignOfDet2x2(x1, y1, x2, y2); int d2 = -originalSignOfDet2x2(y1, x1, x2, y2); assert d1 == -d2; return d1; } */ /* * Test code to force a standard ordering of input ordinates. * A possible fix for a rare problem where evaluation is order-dependent. */ /* public static int signOfDet2x2(double x1, double y1, double x2, double y2) { if (x1 > x2) { return -signOfDet2x2ordX(x2, y2, x1, y1); } return signOfDet2x2ordX(x1, y1, x2, y2); } private static int signOfDet2x2ordX(double x1, double y1, double x2, double y2) { if (y1 > y2) { return -originalSignOfDet2x2(y1, x1, y2, x2); } return originalSignOfDet2x2(x1, y1, x2, y2); } // */ /** * Computes the sign of the determinant of the 2x2 matrix * with the given entries, in a robust way. * * @return -1 if the determinant is negative, * @return 1 if the determinant is positive, * @return 0 if the determinant is 0. */ //private static int originalSignOfDet2x2(double x1, double y1, double x2, double y2) { public static int signOfDet2x2(double x1, double y1, double x2, double y2) { // returns -1 if the determinant is negative, // returns 1 if the determinant is positive, // returns 0 if the determinant is null. int sign; double swap; double k; long count = 0; //callCount++; // debugging only sign = 1; /* * testing null entries */ if ((x1 == 0.0) || (y2 == 0.0)) { if ((y1 == 0.0) || (x2 == 0.0)) { return 0; } else if (y1 > 0) { if (x2 > 0) { return -sign; } else { return sign; } } else { if (x2 > 0) { return sign; } else { return -sign; } } } if ((y1 == 0.0) || (x2 == 0.0)) { if (y2 > 0) { if (x1 > 0) { return sign; } else { return -sign; } } else { if (x1 > 0) { return -sign; } else { return sign; } } } /* * making y coordinates positive and permuting the entries */ /* * so that y2 is the biggest one */ if (0.0 < y1) { if (0.0 < y2) { if (y1 <= y2) { ; } else { sign = -sign; swap = x1; x1 = x2; x2 = swap; swap = y1; y1 = y2; y2 = swap; } } else { if (y1 <= -y2) { sign = -sign; x2 = -x2; y2 = -y2; } else { swap = x1; x1 = -x2; x2 = swap; swap = y1; y1 = -y2; y2 = swap; } } } else { if (0.0 < y2) { if (-y1 <= y2) { sign = -sign; x1 = -x1; y1 = -y1; } else { swap = -x1; x1 = x2; x2 = swap; swap = -y1; y1 = y2; y2 = swap; } } else { if (y1 >= y2) { x1 = -x1; y1 = -y1; x2 = -x2; y2 = -y2; ; } else { sign = -sign; swap = -x1; x1 = -x2; x2 = swap; swap = -y1; y1 = -y2; y2 = swap; } } } /* * making x coordinates positive */ /* * if |x2| < |x1| one can conclude */ if (0.0 < x1) { if (0.0 < x2) { if (x1 <= x2) { ; } else { return sign; } } else { return sign; } } else { if (0.0 < x2) { return -sign; } else { if (x1 >= x2) { sign = -sign; x1 = -x1; x2 = -x2; ; } else { return -sign; } } } /* * all entries strictly positive x1 <= x2 and y1 <= y2 */ while (true) { count = count + 1; // MD - UNSAFE HACK for testing only! // k = (int) (x2 / x1); k = Math.floor(x2 / x1); x2 = x2 - k * x1; y2 = y2 - k * y1; /* * testing if R (new U2) is in U1 rectangle */ if (y2 < 0.0) { return -sign; } if (y2 > y1) { return sign; } /* * finding R' */ if (x1 > x2 + x2) { if (y1 < y2 + y2) { return sign; } } else { if (y1 > y2 + y2) { return -sign; } else { x2 = x1 - x2; y2 = y1 - y2; sign = -sign; } } if (y2 == 0.0) { if (x2 == 0.0) { return 0; } else { return -sign; } } if (x2 == 0.0) { return sign; } /* * exchange 1 and 2 role. */ // MD - UNSAFE HACK for testing only! // k = (int) (x1 / x2); k = Math.floor(x1 / x2); x1 = x1 - k * x2; y1 = y1 - k * y2; /* * testing if R (new U1) is in U2 rectangle */ if (y1 < 0.0) { return sign; } if (y1 > y2) { return -sign; } /* * finding R' */ if (x2 > x1 + x1) { if (y2 < y1 + y1) { return -sign; } } else { if (y2 > y1 + y1) { return sign; } else { x1 = x2 - x1; y1 = y2 - y1; sign = -sign; } } if (y1 == 0.0) { if (x1 == 0.0) { return 0; } else { return sign; } } if (x1 == 0.0) { return -sign; } } } /** * Returns the index of the direction of the point <code>q</code> relative to * a vector specified by <code>p1-p2</code>. * * @param p1 the origin point of the vector * @param p2 the final point of the vector * @param q the point to compute the direction to * * @return 1 if q is counter-clockwise (left) from p1-p2 * @return -1 if q is clockwise (right) from p1-p2 * @return 0 if q is collinear with p1-p2 */ public static int orientationIndex(Coordinate p1, Coordinate p2, Coordinate q) { /** * MD - 9 Aug 2010 It seems that the basic algorithm is slightly orientation * dependent, when computing the orientation of a point very close to a * line. This is possibly due to the arithmetic in the translation to the * origin. * * For instance, the following situation produces identical results in spite * of the inverse orientation of the line segment: * * Coordinate p0 = new Coordinate(219.3649559090992, 140.84159161824724); * Coordinate p1 = new Coordinate(168.9018919682399, -5.713787599646864); * * Coordinate p = new Coordinate(186.80814046338352, 46.28973405831556); int * orient = orientationIndex(p0, p1, p); int orientInv = * orientationIndex(p1, p0, p); * * */ double dx1 = p2.x - p1.x; double dy1 = p2.y - p1.y; double dx2 = q.x - p2.x; double dy2 = q.y - p2.y; return signOfDet2x2(dx1, dy1, dx2, dy2); } }