/* * Copyright (c) 2016 Vivid Solutions. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v. 1.0 which accompanies this distribution. * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * * http://www.eclipse.org/org/documents/edl-v10.php. */ package org.locationtech.jts.geomgraph.index; /** * @version 1.7 */ import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.List; import org.locationtech.jts.geomgraph.Edge; /** * Finds all intersections in one or two sets of edges, * using an x-axis sweepline algorithm in conjunction with Monotone Chains. * While still O(n^2) in the worst case, this algorithm * drastically improves the average-case time. * The use of MonotoneChains as the items in the index * seems to offer an improvement in performance over a sweep-line alone. * * @version 1.7 */ public class SimpleMCSweepLineIntersector extends EdgeSetIntersector { List events = new ArrayList(); // statistics information int nOverlaps; /** * A SimpleMCSweepLineIntersector creates monotone chains from the edges * and compares them using a simple sweep-line along the x-axis. */ public SimpleMCSweepLineIntersector() { } public void computeIntersections(List edges, SegmentIntersector si, boolean testAllSegments) { if (testAllSegments) add(edges, null); else add(edges); computeIntersections(si); } public void computeIntersections(List edges0, List edges1, SegmentIntersector si) { add(edges0, edges0); add(edges1, edges1); computeIntersections(si); } private void add(List edges) { for (Iterator i = edges.iterator(); i.hasNext(); ) { Edge edge = (Edge) i.next(); // edge is its own group add(edge, edge); } } private void add(List edges, Object edgeSet) { for (Iterator i = edges.iterator(); i.hasNext(); ) { Edge edge = (Edge) i.next(); add(edge, edgeSet); } } private void add(Edge edge, Object edgeSet) { MonotoneChainEdge mce = edge.getMonotoneChainEdge(); int[] startIndex = mce.getStartIndexes(); for (int i = 0; i < startIndex.length - 1; i++) { MonotoneChain mc = new MonotoneChain(mce, i); SweepLineEvent insertEvent = new SweepLineEvent(edgeSet, mce.getMinX(i), mc); events.add(insertEvent); events.add(new SweepLineEvent(mce.getMaxX(i), insertEvent)); } } /** * Because Delete Events have a link to their corresponding Insert event, * it is possible to compute exactly the range of events which must be * compared to a given Insert event object. */ private void prepareEvents() { Collections.sort(events); // set DELETE event indexes for (int i = 0; i < events.size(); i++ ) { SweepLineEvent ev = (SweepLineEvent) events.get(i); if (ev.isDelete()) { ev.getInsertEvent().setDeleteEventIndex(i); } } } private void computeIntersections(SegmentIntersector si) { nOverlaps = 0; prepareEvents(); for (int i = 0; i < events.size(); i++ ) { SweepLineEvent ev = (SweepLineEvent) events.get(i); if (ev.isInsert()) { processOverlaps(i, ev.getDeleteEventIndex(), ev, si); } if (si.isDone()) { break; } } } private void processOverlaps(int start, int end, SweepLineEvent ev0, SegmentIntersector si) { MonotoneChain mc0 = (MonotoneChain) ev0.getObject(); /** * Since we might need to test for self-intersections, * include current INSERT event object in list of event objects to test. * Last index can be skipped, because it must be a Delete event. */ for (int i = start; i < end; i++ ) { SweepLineEvent ev1 = (SweepLineEvent) events.get(i); if (ev1.isInsert()) { MonotoneChain mc1 = (MonotoneChain) ev1.getObject(); // don't compare edges in same group, if labels are present if (! ev0.isSameLabel(ev1)) { mc0.computeIntersections(mc1, si); nOverlaps++; } } } } }