package org.checkerframework.javacutil; /*>>> import org.checkerframework.checker.nullness.qual.*; */ import com.sun.source.tree.AnnotatedTypeTree; import com.sun.source.tree.ArrayAccessTree; import com.sun.source.tree.BinaryTree; import com.sun.source.tree.BlockTree; import com.sun.source.tree.ClassTree; import com.sun.source.tree.CompoundAssignmentTree; import com.sun.source.tree.ConditionalExpressionTree; import com.sun.source.tree.ExpressionStatementTree; import com.sun.source.tree.ExpressionTree; import com.sun.source.tree.IdentifierTree; import com.sun.source.tree.LiteralTree; import com.sun.source.tree.MemberSelectTree; import com.sun.source.tree.MethodInvocationTree; import com.sun.source.tree.MethodTree; import com.sun.source.tree.NewClassTree; import com.sun.source.tree.ParameterizedTypeTree; import com.sun.source.tree.ParenthesizedTree; import com.sun.source.tree.PrimitiveTypeTree; import com.sun.source.tree.StatementTree; import com.sun.source.tree.Tree; import com.sun.source.tree.Tree.Kind; import com.sun.source.tree.TypeCastTree; import com.sun.source.tree.VariableTree; import com.sun.source.util.TreePath; import com.sun.source.util.Trees; import com.sun.tools.javac.code.Flags; import com.sun.tools.javac.code.Symbol.MethodSymbol; import com.sun.tools.javac.tree.JCTree; import java.util.ArrayList; import java.util.EnumSet; import java.util.List; import java.util.Set; import javax.annotation.processing.ProcessingEnvironment; import javax.lang.model.element.Element; import javax.lang.model.element.ElementKind; import javax.lang.model.element.ExecutableElement; import javax.lang.model.element.Modifier; import javax.lang.model.element.Name; import javax.lang.model.element.TypeElement; import javax.lang.model.element.VariableElement; import javax.lang.model.type.TypeKind; import javax.lang.model.util.ElementFilter; /** A utility class made for helping to analyze a given {@code Tree}. */ // TODO: This class needs significant restructuring public final class TreeUtils { // Class cannot be instantiated. private TreeUtils() { throw new AssertionError("Class TreeUtils cannot be instantiated."); } /** * Checks if the provided method is a constructor method or no. * * @param tree a tree defining the method * @return true iff tree describes a constructor */ public static boolean isConstructor(final MethodTree tree) { return tree.getName().contentEquals("<init>"); } /** * Checks if the method invocation is a call to super. * * @param tree a tree defining a method invocation * @return true iff tree describes a call to super */ public static boolean isSuperCall(MethodInvocationTree tree) { return isNamedMethodCall("super", tree); } /** * Checks if the method invocation is a call to this. * * @param tree a tree defining a method invocation * @return true iff tree describes a call to this */ public static boolean isThisCall(MethodInvocationTree tree) { return isNamedMethodCall("this", tree); } protected static boolean isNamedMethodCall(String name, MethodInvocationTree tree) { /*@Nullable*/ ExpressionTree mst = tree.getMethodSelect(); assert mst != null; /*nninvariant*/ if (mst.getKind() == Tree.Kind.IDENTIFIER) { return ((IdentifierTree) mst).getName().contentEquals(name); } if (mst.getKind() == Tree.Kind.MEMBER_SELECT) { MemberSelectTree selectTree = (MemberSelectTree) mst; if (selectTree.getExpression().getKind() != Tree.Kind.IDENTIFIER) { return false; } return ((IdentifierTree) selectTree.getExpression()).getName().contentEquals(name); } return false; } /** * Returns true if the tree is a tree that 'looks like' either an access of a field or an * invocation of a method that are owned by the same accessing instance. * * <p>It would only return true if the access tree is of the form: * * <pre> * field * this.field * * method() * this.method() * </pre> * * It does not perform any semantical check to differentiate between fields and local variables; * local methods or imported static methods. * * @param tree expression tree representing an access to object member * @return {@code true} iff the member is a member of {@code this} instance */ public static boolean isSelfAccess(final ExpressionTree tree) { ExpressionTree tr = TreeUtils.skipParens(tree); // If method invocation check the method select if (tr.getKind() == Tree.Kind.ARRAY_ACCESS) { return false; } if (tree.getKind() == Tree.Kind.METHOD_INVOCATION) { tr = ((MethodInvocationTree) tree).getMethodSelect(); } tr = TreeUtils.skipParens(tr); if (tr.getKind() == Tree.Kind.TYPE_CAST) { tr = ((TypeCastTree) tr).getExpression(); } tr = TreeUtils.skipParens(tr); if (tr.getKind() == Tree.Kind.IDENTIFIER) { return true; } if (tr.getKind() == Tree.Kind.MEMBER_SELECT) { tr = ((MemberSelectTree) tr).getExpression(); if (tr.getKind() == Tree.Kind.IDENTIFIER) { Name ident = ((IdentifierTree) tr).getName(); return ident.contentEquals("this") || ident.contentEquals("super"); } } return false; } /** * Gets the first enclosing tree in path, of the specified kind. * * @param path the path defining the tree node * @param kind the kind of the desired tree * @return the enclosing tree of the given type as given by the path */ public static Tree enclosingOfKind(final TreePath path, final Tree.Kind kind) { return enclosingOfKind(path, EnumSet.of(kind)); } /** * Gets the first enclosing tree in path, with any one of the specified kinds. * * @param path the path defining the tree node * @param kinds the set of kinds of the desired tree * @return the enclosing tree of the given type as given by the path */ public static Tree enclosingOfKind(final TreePath path, final Set<Tree.Kind> kinds) { TreePath p = path; while (p != null) { Tree leaf = p.getLeaf(); assert leaf != null; /*nninvariant*/ if (kinds.contains(leaf.getKind())) { return leaf; } p = p.getParentPath(); } return null; } /** * Gets path to the first enclosing class tree, where class is defined by the classTreeKinds * method. * * @param path the path defining the tree node * @return the path to the enclosing class tree */ public static TreePath pathTillClass(final TreePath path) { return pathTillOfKind(path, classTreeKinds()); } /** * Gets path to the first enclosing tree of the specified kind. * * @param path the path defining the tree node * @param kind the kind of the desired tree * @return the path to the enclosing tree of the given type */ public static TreePath pathTillOfKind(final TreePath path, final Tree.Kind kind) { return pathTillOfKind(path, EnumSet.of(kind)); } /** * Gets path to the first enclosing tree with any one of the specified kinds. * * @param path the path defining the tree node * @param kinds the set of kinds of the desired tree * @return the path to the enclosing tree of the given type */ public static TreePath pathTillOfKind(final TreePath path, final Set<Tree.Kind> kinds) { TreePath p = path; while (p != null) { Tree leaf = p.getLeaf(); assert leaf != null; /*nninvariant*/ if (kinds.contains(leaf.getKind())) { return p; } p = p.getParentPath(); } return null; } /** * Gets the first enclosing tree in path, of the specified class * * @param path the path defining the tree node * @param treeClass the class of the desired tree * @return the enclosing tree of the given type as given by the path */ public static <T extends Tree> T enclosingOfClass( final TreePath path, final Class<T> treeClass) { TreePath p = path; while (p != null) { Tree leaf = p.getLeaf(); if (treeClass.isInstance(leaf)) { return treeClass.cast(leaf); } p = p.getParentPath(); } return null; } /** * Gets the enclosing class of the tree node defined by the given {@link TreePath}. It returns a * {@link Tree}, from which {@code checkers.types.AnnotatedTypeMirror} or {@link Element} can be * obtained. * * @param path the path defining the tree node * @return the enclosing class (or interface) as given by the path, or null if one does not * exist */ public static /*@Nullable*/ ClassTree enclosingClass(final /*@Nullable*/ TreePath path) { return (ClassTree) enclosingOfKind(path, classTreeKinds()); } /** * Gets the enclosing variable of a tree node defined by the given {@link TreePath}. * * @param path the path defining the tree node * @return the enclosing variable as given by the path, or null if one does not exist */ public static VariableTree enclosingVariable(final TreePath path) { return (VariableTree) enclosingOfKind(path, Tree.Kind.VARIABLE); } /** * Gets the enclosing method of the tree node defined by the given {@link TreePath}. It returns * a {@link Tree}, from which an {@code checkers.types.AnnotatedTypeMirror} or {@link Element} * can be obtained. * * @param path the path defining the tree node * @return the enclosing method as given by the path, or null if one does not exist */ public static /*@Nullable*/ MethodTree enclosingMethod(final /*@Nullable*/ TreePath path) { return (MethodTree) enclosingOfKind(path, Tree.Kind.METHOD); } public static /*@Nullable*/ BlockTree enclosingTopLevelBlock(TreePath path) { TreePath parpath = path.getParentPath(); while (parpath != null && !classTreeKinds.contains(parpath.getLeaf().getKind())) { path = parpath; parpath = parpath.getParentPath(); } if (path.getLeaf().getKind() == Tree.Kind.BLOCK) { return (BlockTree) path.getLeaf(); } return null; } /** * If the given tree is a parenthesized tree, it returns the enclosed non-parenthesized tree. * Otherwise, it returns the same tree. * * @param tree an expression tree * @return the outermost non-parenthesized tree enclosed by the given tree */ public static ExpressionTree skipParens(final ExpressionTree tree) { ExpressionTree t = tree; while (t.getKind() == Tree.Kind.PARENTHESIZED) { t = ((ParenthesizedTree) t).getExpression(); } return t; } /** * Returns the tree with the assignment context for the treePath leaf node. (Does not handle * pseudo-assignment of an argument to a parameter or a receiver expression to a receiver.) * * <p>The assignment context for the {@code treePath} is the leaf of its parent, if the parent * is one of the following trees: * * <ul> * <li>AssignmentTree * <li>CompoundAssignmentTree * <li>MethodInvocationTree * <li>NewArrayTree * <li>NewClassTree * <li>ReturnTree * <li>VariableTree * </ul> * * If the parent is a ConditionalExpressionTree we need to distinguish two cases: If the leaf is * either the then or else branch of the ConditionalExpressionTree, then recurse on the parent. * If the leaf is the condition of the ConditionalExpressionTree, then return null to not * consider this assignment context. * * <p>If the leaf is a ParenthesizedTree, then recurse on the parent. * * <p>Otherwise, null is returned. * * @return the assignment context as described */ public static Tree getAssignmentContext(final TreePath treePath) { TreePath parentPath = treePath.getParentPath(); if (parentPath == null) { return null; } Tree parent = parentPath.getLeaf(); switch (parent.getKind()) { case PARENTHESIZED: return getAssignmentContext(parentPath); case CONDITIONAL_EXPRESSION: ConditionalExpressionTree cet = (ConditionalExpressionTree) parent; if (cet.getCondition() == treePath.getLeaf()) { // The assignment context for the condition is simply boolean. // No point in going on. return null; } // Otherwise use the context of the ConditionalExpressionTree. return getAssignmentContext(parentPath); case ASSIGNMENT: case METHOD_INVOCATION: case NEW_ARRAY: case NEW_CLASS: case RETURN: case VARIABLE: return parent; default: // 11 Tree.Kinds are CompoundAssignmentTrees, // so use instanceof rather than listing all 11. if (parent instanceof CompoundAssignmentTree) { return parent; } return null; } } /** * Gets the element for a class corresponding to a declaration. * * @return the element for the given class */ public static final TypeElement elementFromDeclaration(ClassTree node) { TypeElement elt = (TypeElement) InternalUtils.symbol(node); return elt; } /** * Gets the element for a method corresponding to a declaration. * * @return the element for the given method */ public static final ExecutableElement elementFromDeclaration(MethodTree node) { ExecutableElement elt = (ExecutableElement) InternalUtils.symbol(node); return elt; } /** * Gets the element for a variable corresponding to its declaration. * * @return the element for the given variable */ public static final VariableElement elementFromDeclaration(VariableTree node) { VariableElement elt = (VariableElement) InternalUtils.symbol(node); return elt; } /** * Gets the element for the declaration corresponding to this use of an element. To get the * element for a declaration, use {@link Trees#getElement(TreePath)} instead. * * <p>TODO: remove this method, as it really doesn't do anything. * * @param node the tree corresponding to a use of an element * @return the element for the corresponding declaration */ public static final Element elementFromUse(ExpressionTree node) { return InternalUtils.symbol(node); } // Specialization for return type. // Might return null if element wasn't found. public static final ExecutableElement elementFromUse(MethodInvocationTree node) { Element el = elementFromUse((ExpressionTree) node); if (el instanceof ExecutableElement) { return (ExecutableElement) el; } else { return null; } } // Specialization for return type. public static final ExecutableElement elementFromUse(NewClassTree node) { return (ExecutableElement) elementFromUse((ExpressionTree) node); } /** * Determine whether the given ExpressionTree has an underlying element. * * @param node the ExpressionTree to test * @return whether the tree refers to an identifier, member select, or method invocation */ public static final boolean isUseOfElement(ExpressionTree node) { node = TreeUtils.skipParens(node); switch (node.getKind()) { case IDENTIFIER: case MEMBER_SELECT: case METHOD_INVOCATION: case NEW_CLASS: return true; default: return false; } } /** @return the name of the invoked method */ public static final Name methodName(MethodInvocationTree node) { ExpressionTree expr = node.getMethodSelect(); if (expr.getKind() == Tree.Kind.IDENTIFIER) { return ((IdentifierTree) expr).getName(); } else if (expr.getKind() == Tree.Kind.MEMBER_SELECT) { return ((MemberSelectTree) expr).getIdentifier(); } ErrorReporter.errorAbort("TreeUtils.methodName: cannot be here: " + node); return null; // dead code } /** * @return true if the first statement in the body is a self constructor invocation within a * constructor */ public static final boolean containsThisConstructorInvocation(MethodTree node) { if (!TreeUtils.isConstructor(node) || node.getBody().getStatements().isEmpty()) return false; StatementTree st = node.getBody().getStatements().get(0); if (!(st instanceof ExpressionStatementTree) || !(((ExpressionStatementTree) st).getExpression() instanceof MethodInvocationTree)) { return false; } MethodInvocationTree invocation = (MethodInvocationTree) ((ExpressionStatementTree) st).getExpression(); return "this".contentEquals(TreeUtils.methodName(invocation)); } public static final Tree firstStatement(Tree tree) { Tree first; if (tree.getKind() == Tree.Kind.BLOCK) { BlockTree block = (BlockTree) tree; if (block.getStatements().isEmpty()) { first = block; } else { first = block.getStatements().iterator().next(); } } else { first = tree; } return first; } /** * Determine whether the given class contains an explicit constructor. * * @param node a class tree * @return true, iff there is an explicit constructor */ public static boolean hasExplicitConstructor(ClassTree node) { TypeElement elem = TreeUtils.elementFromDeclaration(node); for (ExecutableElement ee : ElementFilter.constructorsIn(elem.getEnclosedElements())) { MethodSymbol ms = (MethodSymbol) ee; long mod = ms.flags(); if ((mod & Flags.SYNTHETIC) == 0) { return true; } } return false; } /** * Returns true if the tree is of a diamond type. In contrast to the implementation in TreeInfo, * this version works on Trees. * * @see com.sun.tools.javac.tree.TreeInfo#isDiamond(JCTree) */ public static final boolean isDiamondTree(Tree tree) { switch (tree.getKind()) { case ANNOTATED_TYPE: return isDiamondTree(((AnnotatedTypeTree) tree).getUnderlyingType()); case PARAMETERIZED_TYPE: return ((ParameterizedTypeTree) tree).getTypeArguments().isEmpty(); case NEW_CLASS: return isDiamondTree(((NewClassTree) tree).getIdentifier()); default: return false; } } /** Returns true if the tree represents a {@code String} concatenation operation */ public static final boolean isStringConcatenation(Tree tree) { return (tree.getKind() == Tree.Kind.PLUS && TypesUtils.isString(InternalUtils.typeOf(tree))); } /** Returns true if the compound assignment tree is a string concatenation */ public static final boolean isStringCompoundConcatenation(CompoundAssignmentTree tree) { return (tree.getKind() == Tree.Kind.PLUS_ASSIGNMENT && TypesUtils.isString(InternalUtils.typeOf(tree))); } /** * Returns true if the node is a constant-time expression. * * <p>A tree is a constant-time expression if it is: * * <ol> * <li>a literal tree * <li>a reference to a final variable initialized with a compile time constant * <li>a String concatenation of two compile time constants * </ol> */ public static boolean isCompileTimeString(ExpressionTree node) { ExpressionTree tree = TreeUtils.skipParens(node); if (tree instanceof LiteralTree) { return true; } if (TreeUtils.isUseOfElement(tree)) { Element elt = TreeUtils.elementFromUse(tree); return ElementUtils.isCompileTimeConstant(elt); } else if (TreeUtils.isStringConcatenation(tree)) { BinaryTree binOp = (BinaryTree) tree; return isCompileTimeString(binOp.getLeftOperand()) && isCompileTimeString(binOp.getRightOperand()); } else { return false; } } /** Returns the receiver tree of a field access or a method invocation */ public static ExpressionTree getReceiverTree(ExpressionTree expression) { ExpressionTree receiver = TreeUtils.skipParens(expression); if (!(receiver.getKind() == Tree.Kind.METHOD_INVOCATION || receiver.getKind() == Tree.Kind.MEMBER_SELECT || receiver.getKind() == Tree.Kind.IDENTIFIER || receiver.getKind() == Tree.Kind.ARRAY_ACCESS)) { // No receiver tree for anything but these four kinds. return null; } if (receiver.getKind() == Tree.Kind.METHOD_INVOCATION) { // Trying to handle receiver calls to trees of the form // ((m).getArray()) // returns the type of 'm' in this case receiver = ((MethodInvocationTree) receiver).getMethodSelect(); if (receiver.getKind() == Tree.Kind.IDENTIFIER) { // It's a method call "m(foo)" without an explicit receiver return null; } else if (receiver.getKind() == Tree.Kind.MEMBER_SELECT) { receiver = ((MemberSelectTree) receiver).getExpression(); } else { // Otherwise, e.g. a NEW_CLASS: nothing to do. } } else if (receiver.getKind() == Tree.Kind.IDENTIFIER) { // It's a field access on implicit this or a local variable/parameter. return null; } else if (receiver.getKind() == Tree.Kind.ARRAY_ACCESS) { return TreeUtils.skipParens(((ArrayAccessTree) receiver).getExpression()); } else if (receiver.getKind() == Tree.Kind.MEMBER_SELECT) { receiver = ((MemberSelectTree) receiver).getExpression(); // Avoid int.class if (receiver instanceof PrimitiveTypeTree) { return null; } } // Receiver is now really just the receiver tree. return TreeUtils.skipParens(receiver); } // TODO: What about anonymous classes? // Adding Tree.Kind.NEW_CLASS here doesn't work, because then a // tree gets cast to ClassTree when it is actually a NewClassTree, // for example in enclosingClass above. private static final Set<Tree.Kind> classTreeKinds = EnumSet.of( Tree.Kind.CLASS, Tree.Kind.ENUM, Tree.Kind.INTERFACE, Tree.Kind.ANNOTATION_TYPE); public static Set<Tree.Kind> classTreeKinds() { return classTreeKinds; } /** * Is the given tree kind a class, i.e. a class, enum, interface, or annotation type. * * @param tree the tree to test * @return true, iff the given kind is a class kind */ public static boolean isClassTree(Tree tree) { return classTreeKinds().contains(tree.getKind()); } private static final Set<Tree.Kind> typeTreeKinds = EnumSet.of( Tree.Kind.PRIMITIVE_TYPE, Tree.Kind.PARAMETERIZED_TYPE, Tree.Kind.TYPE_PARAMETER, Tree.Kind.ARRAY_TYPE, Tree.Kind.UNBOUNDED_WILDCARD, Tree.Kind.EXTENDS_WILDCARD, Tree.Kind.SUPER_WILDCARD, Tree.Kind.ANNOTATED_TYPE); public static Set<Tree.Kind> typeTreeKinds() { return typeTreeKinds; } /** * Is the given tree a type instantiation? * * <p>TODO: this is an under-approximation: e.g. an identifier could be either a type use or an * expression. How can we distinguish. * * @param tree the tree to test * @return true, iff the given tree is a type */ public static boolean isTypeTree(Tree tree) { return typeTreeKinds().contains(tree.getKind()); } /** * Returns true if the given element is an invocation of the method, or of any method that * overrides that one. */ public static boolean isMethodInvocation( Tree tree, ExecutableElement method, ProcessingEnvironment env) { if (!(tree instanceof MethodInvocationTree)) { return false; } MethodInvocationTree methInvok = (MethodInvocationTree) tree; ExecutableElement invoked = TreeUtils.elementFromUse(methInvok); return ElementUtils.isMethod(invoked, method, env); } /** * Returns the ExecutableElement for a method declaration of methodName, in class typeName, with * params parameters. * * <p>TODO: to precisely resolve method overloading, we should use parameter types and not just * the number of parameters! */ public static ExecutableElement getMethod( String typeName, String methodName, int params, ProcessingEnvironment env) { TypeElement typeElt = env.getElementUtils().getTypeElement(typeName); for (ExecutableElement exec : ElementFilter.methodsIn(typeElt.getEnclosedElements())) { if (exec.getSimpleName().contentEquals(methodName) && exec.getParameters().size() == params) { return exec; } } ErrorReporter.errorAbort("TreeUtils.getMethod: shouldn't be here!"); return null; // dead code } public static List<ExecutableElement> getMethodList( String typeName, String methodName, int params, ProcessingEnvironment env) { List<ExecutableElement> methods = new ArrayList<>(); TypeElement typeElement = env.getElementUtils().getTypeElement(typeName); for (ExecutableElement exec : ElementFilter.methodsIn(typeElement.getEnclosedElements())) { if (exec.getSimpleName().contentEquals(methodName) && exec.getParameters().size() == params) { methods.add(exec); } } return methods; } /** * Determine whether the given expression is either "this" or an outer "C.this". * * <p>TODO: Should this also handle "super"? */ public static final boolean isExplicitThisDereference(ExpressionTree tree) { if (tree.getKind() == Tree.Kind.IDENTIFIER && ((IdentifierTree) tree).getName().contentEquals("this")) { // Explicit this reference "this" return true; } if (tree.getKind() != Tree.Kind.MEMBER_SELECT) { return false; } MemberSelectTree memSelTree = (MemberSelectTree) tree; if (memSelTree.getIdentifier().contentEquals("this")) { // Outer this reference "C.this" return true; } return false; } /** * Determine whether {@code tree} is a class literal, such as * * <pre> * <em>Object</em> . <em>class</em> * </pre> * * @return true iff if tree is a class literal */ public static boolean isClassLiteral(Tree tree) { if (tree.getKind() != Tree.Kind.MEMBER_SELECT) { return false; } return "class".equals(((MemberSelectTree) tree).getIdentifier().toString()); } /** * Determine whether {@code tree} is a field access expressions, such as * * <pre> * <em>f</em> * <em>obj</em> . <em>f</em> * </pre> * * @return true iff if tree is a field access expression (implicit or explicit) */ public static boolean isFieldAccess(Tree tree) { if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { // explicit field access MemberSelectTree memberSelect = (MemberSelectTree) tree; Element el = TreeUtils.elementFromUse(memberSelect); return el.getKind().isField(); } else if (tree.getKind().equals(Tree.Kind.IDENTIFIER)) { // implicit field access IdentifierTree ident = (IdentifierTree) tree; Element el = TreeUtils.elementFromUse(ident); return el.getKind().isField() && !ident.getName().contentEquals("this") && !ident.getName().contentEquals("super"); } return false; } /** * Compute the name of the field that the field access {@code tree} accesses. Requires {@code * tree} to be a field access, as determined by {@code isFieldAccess}. * * @return the name of the field accessed by {@code tree}. */ public static String getFieldName(Tree tree) { assert isFieldAccess(tree); if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { MemberSelectTree mtree = (MemberSelectTree) tree; return mtree.getIdentifier().toString(); } else { IdentifierTree itree = (IdentifierTree) tree; return itree.getName().toString(); } } /** * Determine whether {@code tree} refers to a method element, such as * * <pre> * <em>m</em>(...) * <em>obj</em> . <em>m</em>(...) * </pre> * * @return true iff if tree is a method access expression (implicit or explicit) */ public static boolean isMethodAccess(Tree tree) { if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { // explicit method access MemberSelectTree memberSelect = (MemberSelectTree) tree; Element el = TreeUtils.elementFromUse(memberSelect); return el.getKind() == ElementKind.METHOD || el.getKind() == ElementKind.CONSTRUCTOR; } else if (tree.getKind().equals(Tree.Kind.IDENTIFIER)) { // implicit method access IdentifierTree ident = (IdentifierTree) tree; // The field "super" and "this" are also legal methods if (ident.getName().contentEquals("super") || ident.getName().contentEquals("this")) { return true; } Element el = TreeUtils.elementFromUse(ident); return el.getKind() == ElementKind.METHOD || el.getKind() == ElementKind.CONSTRUCTOR; } return false; } /** * Compute the name of the method that the method access {@code tree} accesses. Requires {@code * tree} to be a method access, as determined by {@code isMethodAccess}. * * @return the name of the method accessed by {@code tree}. */ public static String getMethodName(Tree tree) { assert isMethodAccess(tree); if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { MemberSelectTree mtree = (MemberSelectTree) tree; return mtree.getIdentifier().toString(); } else { IdentifierTree itree = (IdentifierTree) tree; return itree.getName().toString(); } } /** * @return {@code true} if and only if {@code tree} can have a type annotation. * <p>TODO: is this implementation precise enough? E.g. does a .class literal work * correctly? */ public static boolean canHaveTypeAnnotation(Tree tree) { return ((JCTree) tree).type != null; } /** * Returns true if and only if the given {@code tree} represents a field access of the given * {@link VariableElement}. */ public static boolean isSpecificFieldAccess(Tree tree, VariableElement var) { if (tree instanceof MemberSelectTree) { MemberSelectTree memSel = (MemberSelectTree) tree; Element field = TreeUtils.elementFromUse(memSel); return field.equals(var); } else if (tree instanceof IdentifierTree) { IdentifierTree idTree = (IdentifierTree) tree; Element field = TreeUtils.elementFromUse(idTree); return field.equals(var); } else { return false; } } /** * Returns the VariableElement for a field declaration. * * @param typeName the class where the field is declared * @param fieldName the name of the field * @param env the processing environment * @return the VariableElement for typeName.fieldName */ public static VariableElement getField( String typeName, String fieldName, ProcessingEnvironment env) { TypeElement mapElt = env.getElementUtils().getTypeElement(typeName); for (VariableElement var : ElementFilter.fieldsIn(mapElt.getEnclosedElements())) { if (var.getSimpleName().contentEquals(fieldName)) { return var; } } ErrorReporter.errorAbort("TreeUtils.getField: shouldn't be here!"); return null; // dead code } /** * Determine whether the given tree represents an ExpressionTree. * * <p>TODO: is there a nicer way than an instanceof? * * @param tree the Tree to test * @return whether the tree is an ExpressionTree */ public static boolean isExpressionTree(Tree tree) { return tree instanceof ExpressionTree; } /** * @param node the method invocation to check * @return true if this is a super call to the {@link Enum} constructor */ public static boolean isEnumSuper(MethodInvocationTree node) { ExecutableElement ex = TreeUtils.elementFromUse(node); Name name = ElementUtils.getQualifiedClassName(ex); boolean correctClass = "java.lang.Enum".contentEquals(name); boolean correctMethod = "<init>".contentEquals(ex.getSimpleName()); return correctClass && correctMethod; } /** * Determine whether the given tree represents a declaration of a type (including type * parameters). * * @param node the Tree to test * @return true if the tree is a type declaration */ public static boolean isTypeDeclaration(Tree node) { switch (node.getKind()) { // These tree kinds are always declarations. Uses of the declared // types have tree kind IDENTIFIER. case ANNOTATION_TYPE: case CLASS: case ENUM: case INTERFACE: case TYPE_PARAMETER: return true; default: return false; } } /** * @see Object#getClass() * @return true iff invocationTree is an instance of getClass() */ public static boolean isGetClassInvocation(MethodInvocationTree invocationTree) { final Element declarationElement = elementFromUse(invocationTree); String ownerName = ElementUtils.getQualifiedClassName(declarationElement.getEnclosingElement()) .toString(); return ownerName.equals("java.lang.Object") && declarationElement.getSimpleName().toString().equals("getClass"); } /** * Returns whether or not the leaf of the tree path is in a static scope. * * @param path TreePath whose leaf may or may not be in static scope * @return returns whether or not the leaf of the tree path is in a static scope */ public static boolean isTreeInStaticScope(TreePath path) { MethodTree enclosingMethod = TreeUtils.enclosingMethod(path); if (enclosingMethod != null) { return enclosingMethod.getModifiers().getFlags().contains(Modifier.STATIC); } // no enclosing method, check for static or initializer block BlockTree block = enclosingTopLevelBlock(path); if (block != null) { return block.isStatic(); } // check if its in a variable initializer Tree t = enclosingVariable(path); if (t != null) { return ((VariableTree) t).getModifiers().getFlags().contains((Modifier.STATIC)); } ClassTree classTree = enclosingClass(path); if (classTree != null) { return classTree.getModifiers().getFlags().contains((Modifier.STATIC)); } return false; } /** * Returns whether or not tree is an access of array length. * * @param tree tree to check * @return true if tree is an access of array length */ public static boolean isArrayLengthAccess(Tree tree) { if (tree.getKind() == Kind.MEMBER_SELECT && isFieldAccess(tree) && getFieldName(tree).equals("length")) { ExpressionTree expressionTree = ((MemberSelectTree) tree).getExpression(); if (InternalUtils.typeOf(expressionTree).getKind() == TypeKind.ARRAY) { return true; } } return false; } }