/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.server; import android.text.format.DateUtils; /** @hide */ public class TwilightCalculator { /** Value of {@link #mState} if it is currently day */ public static final int DAY = 0; /** Value of {@link #mState} if it is currently night */ public static final int NIGHT = 1; private static final float DEGREES_TO_RADIANS = (float) (Math.PI / 180.0f); // element for calculating solar transit. private static final float J0 = 0.0009f; // correction for civil twilight private static final float ALTIDUTE_CORRECTION_CIVIL_TWILIGHT = -0.104719755f; // coefficients for calculating Equation of Center. private static final float C1 = 0.0334196f; private static final float C2 = 0.000349066f; private static final float C3 = 0.000005236f; private static final float OBLIQUITY = 0.40927971f; // Java time on Jan 1, 2000 12:00 UTC. private static final long UTC_2000 = 946728000000L; /** * Time of sunset (civil twilight) in milliseconds or -1 in the case the day * or night never ends. */ public long mSunset; /** * Time of sunrise (civil twilight) in milliseconds or -1 in the case the * day or night never ends. */ public long mSunrise; /** Current state */ public int mState; /** * calculates the civil twilight bases on time and geo-coordinates. * * @param time time in milliseconds. * @param latiude latitude in degrees. * @param longitude latitude in degrees. */ public void calculateTwilight(long time, double latiude, double longitude) { final float daysSince2000 = (float) (time - UTC_2000) / DateUtils.DAY_IN_MILLIS; // mean anomaly final float meanAnomaly = 6.240059968f + daysSince2000 * 0.01720197f; // true anomaly final double trueAnomaly = meanAnomaly + C1 * Math.sin(meanAnomaly) + C2 * Math.sin(2 * meanAnomaly) + C3 * Math.sin(3 * meanAnomaly); // ecliptic longitude final double solarLng = trueAnomaly + 1.796593063d + Math.PI; // solar transit in days since 2000 final double arcLongitude = -longitude / 360; float n = Math.round(daysSince2000 - J0 - arcLongitude); double solarTransitJ2000 = n + J0 + arcLongitude + 0.0053d * Math.sin(meanAnomaly) + -0.0069d * Math.sin(2 * solarLng); // declination of sun double solarDec = Math.asin(Math.sin(solarLng) * Math.sin(OBLIQUITY)); final double latRad = latiude * DEGREES_TO_RADIANS; double cosHourAngle = (Math.sin(ALTIDUTE_CORRECTION_CIVIL_TWILIGHT) - Math.sin(latRad) * Math.sin(solarDec)) / (Math.cos(latRad) * Math.cos(solarDec)); // The day or night never ends for the given date and location, if this value is out of // range. if (cosHourAngle >= 1) { mState = NIGHT; mSunset = -1; mSunrise = -1; return; } else if (cosHourAngle <= -1) { mState = DAY; mSunset = -1; mSunrise = -1; return; } float hourAngle = (float) (Math.acos(cosHourAngle) / (2 * Math.PI)); mSunset = Math.round((solarTransitJ2000 + hourAngle) * DateUtils.DAY_IN_MILLIS) + UTC_2000; mSunrise = Math.round((solarTransitJ2000 - hourAngle) * DateUtils.DAY_IN_MILLIS) + UTC_2000; if (mSunrise < time && mSunset > time) { mState = DAY; } else { mState = NIGHT; } } }