/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Nand3_star_sy3.java * * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.generator.layout.gates; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.prototype.PortCharacteristic; import com.sun.electric.database.topology.PortInst; import com.sun.electric.tool.generator.layout.FoldedMos; import com.sun.electric.tool.generator.layout.FoldedNmos; import com.sun.electric.tool.generator.layout.FoldedPmos; import com.sun.electric.tool.generator.layout.FoldsAndWidth; import com.sun.electric.tool.generator.layout.LayoutLib; import com.sun.electric.tool.generator.layout.StdCellParams; import com.sun.electric.tool.generator.layout.TechType; import com.sun.electric.tool.generator.layout.TrackRouter; import com.sun.electric.tool.generator.layout.TrackRouterH; import com.sun.electric.tool.Job; public class Nand3_star_sy3 { private static final double nmosTop = -9.0; private static final double pmosBot = 9.0; // private static final double wellOverhangDiff = 6; private static final double incY = -4.0; private static final double inaY = 4.0; private static final double outHiY = 11.0; private static final double outLoY = -11.0; private static void error(boolean pred, String msg) { Job.error(pred, msg); } public static Cell makePart(double sz, String threshold, StdCellParams stdCell) { TechType tech = stdCell.getTechType(); sz = stdCell.roundSize(sz); error(!threshold.equals("") && !threshold.equals("LT"), "Nand3_sy3: threshold not \"\" or \"LT\": "+threshold); String nm = "nand3" + threshold + "_sy3"; sz = stdCell.checkMinStrength(sz, threshold.equals("LT") ? 3./2 : 1, nm); // Compute number of folds and width for PMOS double spaceAvail = // p1_p1_sp/2 + p1m1_wid + p1pd_sp stdCell.getCellTop() - (1.5 + 5 + 2) - pmosBot; double lamPerSz = threshold.equals("LT") ? 2 : 6; double totWid = sz * lamPerSz * 3; // 3 independent pullups FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 3); error(fwP==null, "can't make "+nm+" this small: "+sz); // Compute number of folds and width for NMOS int nbStackedN = 3; // p1OverhangDiff + p1_p1_sp + p1m1_wid + p1_p1_sp/2 spaceAvail = nmosTop - (stdCell.getCellBot() + 2 + 3 + 5 + 1.5); totWid = sz * 3 * nbStackedN; FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 3); error(fwN==null, "can't make "+nm+" this small: "+sz); // create NAND Part Cell nand = stdCell.findPart(nm, sz); if (nand!=null) return nand; nand = stdCell.newPart(nm, sz); // leave vertical m1 tracks for inB, inC, and inc jog double inaX = 1.5 + 2; // m1_m1_sp/2 + m1_wid/2 double inbX = inaX + 2 + 3 + 2; // m1_wid/2 + m1_m1_sp + m1_wid/2 double jogaX = inbX + 2 + 3 + 2; // m1_wid/2 + m1_m1_sp + m1_wid/2 double nmosX = jogaX + 2 + 3 + 2;//m1_wid/2 + m1_m1_sp + diffCont_wid/2 // NMOS FoldedMos nmos = new FoldedNmos(nmosX, nmosTop - fwN.physWid/2, fwN.nbFolds, nbStackedN, fwN.gateWid, nand, tech); // PMOS // pmos pitch for 12 folds: 8 * 12 = 96 // nmos pitch for 6 folds: (3 * 5 + 3) * 6 = 108 // Create one FoldedMos for every 12 folds. // Center 12 pmos folds over 6 nmos folds double pmosY = pmosBot + fwP.physWid/2; FoldedMos[] pmoss = new FoldedMos[(int) Math.ceil(fwP.nbFolds/12.0)]; for (int i=0; i<pmoss.length; i++) { double pmosPitch = 108; double pmosX = nmosX + 6 + i*pmosPitch; int nbFolds = Math.min(12, fwP.nbFolds - i*12); pmoss[i] = new FoldedPmos(pmosX, pmosY, nbFolds, 1, fwP.gateWid, nand, tech); } // Fill select notch between foldedmos stdCell.fillDiffAndSelectNotches(pmoss, false); // create vdd and gnd exports and connect to MOS source/drains stdCell.wireVddGnd(nmos, StdCellParams.EVEN, nand); stdCell.wireVddGnd(pmoss, StdCellParams.EVEN, nand); // Nand input A double inaHiY = 11; LayoutLib.newExport(nand, "ina", PortCharacteristic.IN, tech.m1(), 4, inaX, inaHiY); TrackRouter inaHi = new TrackRouterH(tech.m2(), 3, inaHiY, tech, nand); inaHi.connect(nand.findExport("ina")); PortInst joga = LayoutLib.newNodeInst(tech.m1pin(), jogaX, inaHiY, 3, 3, 0, nand).getOnlyPortInst(); inaHi.connect(joga); TrackRouter inaLo = new TrackRouterH(tech.m1(), 3, inaY, tech, nand); inaLo.connect(joga); for (int i=0; i<fwN.nbFolds; i++) { switch (i%6) { case 0: inaLo.connect(nmos.getGate(i*3+0, 'T'), -4, -tech.getPolyTShapeOffset()); break; case 1: inaLo.connect(nmos.getGate(i*3+1, 'T'), -1); break; case 2: inaLo.connect(nmos.getGate(i*3+2, 'T')); break; case 3: inaLo.connect(nmos.getGate(i*3+0, 'T')); break; case 4: inaLo.connect(nmos.getGate(i*3+1, 'T'), 1); break; case 5: inaLo.connect(nmos.getGate(i*3+2, 'T'), 4, -tech.getPolyTShapeOffset()); break; } } for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { switch (j%12) { case 2: inaLo.connect(pmoss[i].getGate(j, 'B')); break; case 5: inaLo.connect(pmoss[i].getGate(j, 'B')); break; case 6: inaLo.connect(pmoss[i].getGate(j, 'B')); break; case 9: inaLo.connect(pmoss[i].getGate(j, 'B')); break; } } } // Nand input B double gndBot = stdCell.getGndY() - stdCell.getGndWidth()/2; double inbLoY = gndBot - 3 - 2; // -m1_m1_sp -m1_wid/2 // -polyOverhangDiff - p1_p1_sp -p1m1/2 double nmosBot = nmosTop - fwN.physWid; inbLoY = Math.min(inbLoY, nmosBot - 2 - 3 - 2.5); double spFromVdd = // vddTop + m1_m1_sp + m1_wid/2 stdCell.getVddY() + stdCell.getVddWidth()/2 + 3 + 2; double spFromPmos = // pmosTop + pd_p1_sp + p1m1_wid/2 pmosBot + fwP.physWid + 2 + 2.5; double inbHiY = Math.max(spFromVdd, spFromPmos); LayoutLib.newExport(nand, "inb", PortCharacteristic.IN, tech.m1(), 4, inbX, inbHiY); TrackRouter inbHi = new TrackRouterH(tech.m1(), 3, inbHiY, tech, nand); inbHi.connect(nand.findExport("inb")); for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { switch (j%12) { case 0: inbHi.connect(pmoss[i].getGate(j, 'T')); break; case 4: inbHi.connect(pmoss[i].getGate(j, 'T')); break; case 7: inbHi.connect(pmoss[i].getGate(j, 'T')); break; case 11: inbHi.connect(pmoss[i].getGate(j, 'T')); break; } } } TrackRouter inbLo = new TrackRouterH(tech.m1(), 3, inbLoY, tech, nand); inbLo.connect(nand.findExport("inb")); for (int i=0; i<fwN.nbFolds; i++) { switch (i%6) { case 0: inbLo.connect(nmos.getGate(i*3+1, 'B')); break; case 1: inbLo.connect(nmos.getGate(i*3+0, 'B')); break; case 2: inbLo.connect(nmos.getGate(i*3+0, 'B')); break; case 3: inbLo.connect(nmos.getGate(i*3+2, 'B')); break; case 4: inbLo.connect(nmos.getGate(i*3+2, 'B')); break; case 5: inbLo.connect(nmos.getGate(i*3+1, 'B')); break; } } // Nand input C TrackRouter inc = new TrackRouterH(tech.m1(), 3, incY, tech, nand); for (int i=0; i<fwN.nbFolds; i++) { switch (i%6) { case 0: inc.connect(nmos.getGate(i*3+2, 'T'), 1.5); break; case 1: inc.connect(nmos.getGate(i*3+2, 'T'), 1.5);break; case 2: inc.connect(nmos.getGate(i*3+1, 'T'), -11.5, 1);break; case 3: inc.connect(nmos.getGate(i*3+1, 'T'), 11.5, 1);break; case 4: inc.connect(nmos.getGate(i*3+0, 'T'), -1.5);break; case 5: inc.connect(nmos.getGate(i*3+0, 'T'), -1.5); break; } } for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { switch (j%12) { case 1: inc.connect(pmoss[i].getGate(j, 'B'), -2.5, tech.getPolyTShapeOffset()); break; case 3: inc.connect(pmoss[i].getGate(j, 'B'), -.5, 0); break; case 8: inc.connect(pmoss[i].getGate(j, 'B'), .5, 0); break; case 10: inc.connect(pmoss[i].getGate(j, 'B'), 2.5, tech.getPolyTShapeOffset()); break; } } } // m1_wid + m1_space + m1_wid/2 double incX = StdCellParams.getRightDiffX(nmos) + 2 + 3 + 2; LayoutLib.newExport(nand, "inc", PortCharacteristic.IN, tech.m1(), 4, incX, incY); inc.connect(nand.findExport("inc")); // Nand output double outX = incX + 2 + 3 + 2; // m1_wid/2 + m1_sp + m1_wid/2 LayoutLib.newExport(nand, "out", PortCharacteristic.OUT, tech.m1(), 4, outX, outHiY); TrackRouter outHi = new TrackRouterH(tech.m2(), 4, outHiY, tech, nand); outHi.connect(nand.findExport("out")); for (int i=0; i<pmoss.length; i++) { for (int j=1; j<pmoss[i].nbSrcDrns(); j+=2) { outHi.connect(pmoss[i].getSrcDrn(j)); } } TrackRouter outLo = new TrackRouterH(tech.m2(), 4, outLoY, tech, nand); outLo.connect(nand.findExport("out")); for (int i=1; i<nmos.nbSrcDrns(); i+=2) { outLo.connect(nmos.getSrcDrn(i)); } // add wells double wellMinX = 0; double wellMaxX = outX + 2 + 1.5; // m1_wid/2 + m1m1_space/2 stdCell.addNmosWell(wellMinX, wellMaxX, nand); stdCell.addPmosWell(wellMinX, wellMaxX, nand); // add essential bounds stdCell.addEssentialBounds(wellMinX, wellMaxX, nand); // perform Network Consistency Check // RKao fixme. NCC with "wrong" schematic stdCell.doNCC(nand, nm+"{sch}"); return nand; } }