/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: InvCTLn.java * * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.generator.layout.gates; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.prototype.PortCharacteristic; import com.sun.electric.tool.generator.layout.FoldedMos; import com.sun.electric.tool.generator.layout.FoldedNmos; import com.sun.electric.tool.generator.layout.FoldedPmos; import com.sun.electric.tool.generator.layout.FoldsAndWidth; import com.sun.electric.tool.generator.layout.LayoutLib; import com.sun.electric.tool.generator.layout.StdCellParams; import com.sun.electric.tool.generator.layout.TechType; import com.sun.electric.tool.generator.layout.TrackRouter; import com.sun.electric.tool.generator.layout.TrackRouterH; import com.sun.electric.tool.Job; public class InvCTLn { private static final double wellOverhangDiff = 6; private static final double outHiY = 11.0; private static final double outLoY = -11.0; private static final double wirePitch = 7; private static final double wireWithPolyPitch = 8; // p1m1_wid/2 + p1_mos_sp private static final double pmosBot = wireWithPolyPitch/2 + 5./2 + 2; private static final double nmosTop = -pmosBot; private static final double inY = wireWithPolyPitch/2; private static final double ctlY = -wireWithPolyPitch/2; private static void error(boolean pred, String msg) { Job.error(pred, msg); } public static Cell makePart(double sz, StdCellParams stdCell) { TechType tech = stdCell.getTechType(); String nm = "invCTLn"; sz = stdCell.roundSize(sz); sz = stdCell.checkMinStrength(sz, .5, nm); // Compute number of folds and width for NMOS int nbSeriesN = 2; double spaceAvail = nmosTop - (stdCell.getCellBot() + wellOverhangDiff); double totWid = sz * nbSeriesN * 3; FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1); error(fwN==null, "can't make "+nm+" this small: "+sz); // Compute number of folds and width for PMOS. spaceAvail = stdCell.getCellTop() - wellOverhangDiff - pmosBot; totWid = sz * 6; FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1); error(fwP==null, "can't make "+nm+" this small: "+sz); // create Inv Part Cell inv = stdCell.findPart(nm, sz); if (inv!=null) return inv; inv = stdCell.newPart(nm, sz); // leave vertical m1 track for in double inX = wirePitch/2; // Allocate two folds per FoldedPmos. Align PMOS gate 1 with NMOS // gate 0. double pmosX = inX + wirePitch; double pmosY = pmosBot + fwP.physWid/2; FoldedMos[] pmoss = new FoldedMos[(fwP.nbFolds+1)/2]; for (int nbFoldsP=0; nbFoldsP<fwP.nbFolds; nbFoldsP+=2) { double pmosPitch = 26; double x = pmosX + (nbFoldsP/2)*pmosPitch; int nbFolds = Math.min(2, fwP.nbFolds - nbFoldsP); FoldedMos pmos = new FoldedPmos(x, pmosY, nbFolds, 1, fwP.gateWid, inv, tech); pmoss[nbFoldsP/2] = pmos; } stdCell.fillDiffAndSelectNotches(pmoss, true); // NMOS width dominates width of inv. Allocate it in one FoldedNmos double nmosX = pmosX + 8; double nmosY = nmosTop - fwN.physWid/2; FoldedMos nmos = new FoldedNmos(nmosX, nmosY, fwN.nbFolds, nbSeriesN, fwN.gateWid, inv, tech); // create vdd and gnd exports and connect to MOS source/drains stdCell.wireVddGnd(nmos, StdCellParams.EVEN, inv); stdCell.wireVddGnd(pmoss, StdCellParams.EVEN, inv); // // fool Electric's NCC into paralleling NMOS stacks by connecting // // stacks' internal diffusion nodes. // for (int i=0; i<nmos.nbInternalSrcDrns(); i++) { // LayoutLib.newArcInst(tech.universalArc, 0,nmos.getInternalSrcDrn(0), // nmos.getInternalSrcDrn(i)); // } // Inv input: in // m1_wid + m1_space + m1_wid/2 LayoutLib.newExport(inv, "in", PortCharacteristic.IN, tech.m1(), 4, inX, inY); TrackRouter in = new TrackRouterH(tech.m1(), 3, inY, tech, inv); in.connect(inv.findExport("in")); for (int i=0; i<pmoss.length; i++) { FoldedMos pmos = pmoss[i]; in.connect(pmos.getGate(0, 'B'), 4, tech.getPolyLShapeOffset()); if (pmos.nbGates()==2) { in.connect(pmos.getGate(1, 'B'), -4, tech.getPolyLShapeOffset()); } } for (int i=0; i<nmos.nbGates(); i+=2) { if (i/2 %2 == 0) { in.connect(nmos.getGate(i, 'T'), -4, -tech.getPolyTShapeOffset()); } else { in.connect(nmos.getGate(i+1, 'T'), 4, -tech.getPolyTShapeOffset()); } } // Inv input: ctl double rightDiffX = StdCellParams.getRightDiffX(nmos, pmoss); double ctlX = rightDiffX + wirePitch; LayoutLib.newExport(inv, "ctl", PortCharacteristic.IN, tech.m1(), 4, ctlX, ctlY); TrackRouter ctl = new TrackRouterH(tech.m1(), 3, ctlY, tech, inv); ctl.connect(inv.findExport("ctl")); for (int i=0; i<nmos.nbGates(); i+=2) { if (i/2 % 2 == 0) { ctl.connect(nmos.getGate(i+1, 'T'), 4, -tech.getPolyLShapeOffset()); } else { ctl.connect(nmos.getGate(i, 'T'), -4, -tech.getPolyLShapeOffset()); } } // Inv output: out double outX = ctlX + wirePitch; LayoutLib.newExport(inv, "out", PortCharacteristic.OUT, tech.m1(), 4, outX, outHiY); TrackRouter outHi = new TrackRouterH(tech.m2(), 4, outHiY, tech, inv); outHi.connect(inv.findExport("out")); for (int i=0; i<pmoss.length; i++) { outHi.connect(pmoss[i].getSrcDrn(1)); } TrackRouter outLo = new TrackRouterH(tech.m2(), 4, outLoY, tech, inv); outLo.connect(inv.findExport("out")); for (int i=1; i<nmos.nbSrcDrns(); i+=2) { outLo.connect(nmos.getSrcDrn(i)); } // add wells double wellMinX = 0; double wellMaxX = outX + 2 + 1.5; // m1_wid/2 + m1m1_space/2 stdCell.addNmosWell(wellMinX, wellMaxX, inv); stdCell.addPmosWell(wellMinX, wellMaxX, inv); // add essential bounds stdCell.addEssentialBounds(wellMinX, wellMaxX, inv); // perform Network Consistency Check stdCell.doNCC(inv, nm+"{sch}"); return inv; } }