/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Nand3_star_en_star.java * * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */ package com.sun.electric.tool.generator.layout.gates; import com.sun.electric.database.hierarchy.Cell; import com.sun.electric.database.prototype.PortCharacteristic; import com.sun.electric.database.topology.PortInst; import com.sun.electric.tool.generator.layout.FoldedMos; import com.sun.electric.tool.generator.layout.FoldedNmos; import com.sun.electric.tool.generator.layout.FoldedPmos; import com.sun.electric.tool.generator.layout.FoldsAndWidth; import com.sun.electric.tool.generator.layout.LayoutLib; import com.sun.electric.tool.generator.layout.StdCellParams; import com.sun.electric.tool.generator.layout.TechType; import com.sun.electric.tool.generator.layout.TrackRouter; import com.sun.electric.tool.generator.layout.TrackRouterH; import com.sun.electric.tool.Job; class Nand3_star_en_star { private static final double nmosTop = -11.5; private static final double pmosBot = 9.0; // private static final double wellOverhangDiff = 6; private static final double inbY = -4.0; private static final double incY = 4.0; private static final double outHiY = 11.0; private static final double outLoY = -11.0; private static void error(boolean pred, String msg) { Job.error(pred, msg); } private static void connectIncSymmetric(TrackRouter incLo, FoldedMos nmos, FoldedMos[] pmoss, TechType tech) { for (int i=0; i<nmos.nbGates()/3; i++) { int dPort = 0; double dx = 0; switch (i%4) { case 0: dPort=2; dx=-tech.getPolyLShapeOffset(); break; case 1: dPort=1; dx=-0.5; break; case 2: dPort=1; dx=-tech.getPolyLShapeOffset(); break; case 3: dPort=0; dx= 0.5; break; } incLo.connect(nmos.getGate(i*3+dPort, 'T'), dx); } for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { double dx = 0; boolean con = true; switch (j) { case 1: dx= 0.5; break; case 3: dx=-tech.getPolyLShapeOffset(); break; case 5: dx=-0.5; break; case 7: dx=-tech.getPolyLShapeOffset(); break; default: con = false; } if (con) incLo.connect(pmoss[i].getGate(j, 'B'), dx); } } } private static void connectIncAsymmetric(TrackRouter incLo, FoldedMos nmos, FoldedMos[] pmoss, TechType tech) { for (int i=0; i<nmos.nbGates()/3; i++) { int dPort = 0; double dx=0, dy=0; switch (i%4) { case 0: dPort=2; dx=-tech.getPolyLShapeOffset(); dy= 0.0; break; case 1: dPort=0; dx=-tech.getPolyLShapeOffset(); dy= 0.0; break; case 2: dPort=2; dx= tech.getPolyTShapeOffset(); dy=-tech.getPolyTShapeOffset(); break; case 3: dPort=0; dx=-4.5; dy=-tech.getPolyTShapeOffset(); break; } incLo.connect(nmos.getGate(i*3+dPort, 'T'), dx, dy); } for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { double dx = 0; boolean con = true; switch (j) { case 1: dx= 0.5; break; case 2: dx= 0.5; break; case 4: dx= 0.0; break; case 6: dx= tech.getPolyLShapeOffset(); break; default: con = false; } if (con) incLo.connect(pmoss[i].getGate(j, 'B'), dx); } } } private static void connectInbSymmetric(TrackRouter inb, FoldedMos nmos, FoldedMos[] pmoss, TechType tech) { for (int i=0; i<nmos.nbGates()/3; i++) { int dPort = 0; double dx = 0; switch (i%4) { case 0: dPort=1; dx=-tech.getPolyLShapeOffset(); break; case 1: dPort=0; dx=-tech.getPolyLShapeOffset(); break; case 2: dPort=2; dx= tech.getPolyLShapeOffset(); break; case 3: dPort=1; dx= tech.getPolyLShapeOffset(); break; } inb.connect(nmos.getGate(i*3+dPort, 'T'), dx); } for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { double dx = 0; boolean con = true; switch (j) { case 0: dx= tech.getPolyTShapeOffset(); break; case 2: dx= 0.5; break; case 4: dx= 0.0; break; case 6: dx=-0.5; break; default: con = false; } if (con) inb.connect(pmoss[i].getGate(j, 'B'), dx, tech.getPolyLShapeOffset()); } } } private static void connectInbAsymmetric(TrackRouter inb, FoldedMos nmos, FoldedMos[] pmoss, TechType tech) { for (int i=0; i<nmos.nbGates()/3; i++) { int dPort = 0; double dx = 0; switch (i%4) { case 0: dPort=1; dx=-tech.getPolyLShapeOffset(); break; case 1: dPort=1; dx= tech.getPolyLShapeOffset(); break; case 2: dPort=1; dx=-tech.getPolyLShapeOffset(); break; case 3: dPort=1; dx= tech.getPolyLShapeOffset(); break; } inb.connect(nmos.getGate(i*3+dPort, 'T'), dx); } for (int i=0; i<pmoss.length; i++) { for (int j=0; j<pmoss[i].nbGates(); j++) { double dx=0, dy=0; boolean con = true; switch (j) { case 0: dx= tech.getPolyTShapeOffset(); dy= 0.0; break; case 3: dx= 0.5; dy= 0.0; break; case 5: dx=-0.5; dy= 0.0; break; case 7: dx= 4.5; dy= 9.5; break; default: con = false; } if (con) inb.connect(pmoss[i].getGate(j, 'B'), dx, dy); } } } static Cell makePart(double sz, String threshold, String symmetry, StdCellParams stdCell) { TechType tech = stdCell.getTechType(); sz = stdCell.roundSize(sz); error(!threshold.equals("") && !threshold.equals("LT"), "Nand3en: threshold not \"\" or \"LT\": "+threshold); error(!symmetry.equals("") && !symmetry.equals("SY"), "Nand3en: symmetry not \"\" or \"SY\": "+symmetry); String nm = "nand3" + threshold + "en" + (symmetry.equals("SY") ? "_sy" : ""); double nmosMinSz = 1./3 * (symmetry.equals("SY") ? 2 : 1); double pmosMinSz = threshold.equals("LT") ? 3./3 : 3./6; sz = stdCell.checkMinStrength(sz, Math.max(nmosMinSz, pmosMinSz), nm); // COMPUTE NUMBER of folds and width for PMOS double spaceAvail = // wellOverhangDiff stdCell.getCellTop() - 6 - pmosBot; double lamPerSz = threshold.equals("LT") ? 3 : 6; double totWid = sz * lamPerSz * 2; // 2 independent pullups FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 2); error(fwP==null, "can't make "+nm+" this small: "+sz); // Compute number of folds and width for NMOS int nbStackedN = 3; // nd_p1_sp + p1m1_wid + p1_p1_sp/2 spaceAvail = nmosTop - (stdCell.getCellBot() + 2 + 5 + 1.5); totWid = sz * 3 * nbStackedN; int grpSz = symmetry.equals("SY") ? 2 : 1; FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWid,grpSz); error(fwN==null, "can't make "+nm+" this small: "+sz); // create NAND Part Cell nand = stdCell.findPart(nm, sz); if (nand!=null) return nand; nand = stdCell.newPart(nm, sz); // leave vertical m1 tracks for ina, inc, and inb jog double incX = 1.5 + 2; // m1_m1_sp/2 + m1_wid/2 double inbX = incX + 2 + 3 + 2; // m1_wid/2 + m1_m1_sp + m1_wid/2 double jogcX = inbX + 2 + 3 + 2; // m1_wid/2 + m1_m1_sp + m1_wid/2 double mosX = jogcX + 2 + 3 + 2;// m1_wid/2 + m1_m1_sp + diffCont_wid/2 // NMOS FoldedMos nmos = new FoldedNmos(mosX, nmosTop - fwN.physWid/2, fwN.nbFolds, nbStackedN, fwN.gateWid, nand, tech); // PMOS // pmos pitch for 8 folds: 8 * 8 = 64 // nmos pitch for 4 folds: 4 * 18 = 72 // Create one FoldedMos for every 8 folds. // Align left diffusions of first NMOS and PMOS double pmosY = pmosBot + fwP.physWid/2; FoldedMos[] pmoss = new FoldedMos[(int) Math.ceil(fwP.nbFolds/8.0)]; for (int i=0; i<pmoss.length; i++) { double pmosPitch = 72; int nbFolds = Math.min(8, fwP.nbFolds - i*8); pmoss[i] = new FoldedPmos(mosX + i*pmosPitch, pmosY, nbFolds, 1, fwP.gateWid, nand, tech); } // Fill select notch between foldedmos stdCell.fillDiffAndSelectNotches(pmoss, false); // Drop down a single PMOS pullup for ina double rightPdiffX = StdCellParams.getRightDiffX(pmoss); double rightNdiffX = StdCellParams.getRightDiffX(nmos); // pdm1_wid/2 + selOverhangDiff + sel_sel_sp + selOverhangDiff + pdm1_wid/2 double pmosaFromPmos = rightPdiffX + 2.5 + 2 + 2 + 2 + 2.5; double pmosaFromNmos = rightNdiffX - 8; double pmosaX = Math.max(pmosaFromPmos, pmosaFromNmos); FoldedMos pmosa = new FoldedPmos(pmosaX, stdCell.getVddY(), 1, 1, 5, nand, tech); // Fill select notch betweeb pmosa and last pmos stdCell.fillDiffAndSelectNotches(new FoldedMos[]{pmoss[pmoss.length-1], pmosa}, false); // create vdd and gnd exports and connect to MOS source/drains stdCell.wireVddGnd(nmos, StdCellParams.EVEN, nand); stdCell.wireVddGnd(pmoss, StdCellParams.EVEN, nand); stdCell.wireVddGnd(new FoldedMos[] {pmoss[0], pmosa}, StdCellParams.EVEN, nand); // Nand input C double incHiY = 11; LayoutLib.newExport(nand, "inc", PortCharacteristic.IN, tech.m1(), 4, incX, incHiY); TrackRouter incHi = new TrackRouterH(tech.m2(), 3, incHiY, tech, nand); incHi.connect(nand.findExport("inc")); PortInst jogc = LayoutLib.newNodeInst(tech.m1pin(), jogcX, incHiY, 3, 3, 0, nand).getOnlyPortInst(); incHi.connect(jogc); TrackRouter incLo = new TrackRouterH(tech.m1(), 3, incY, tech, nand); incLo.connect(jogc); if (symmetry.equals("SY")) { connectIncSymmetric(incLo, nmos, pmoss, tech); } else { connectIncAsymmetric(incLo, nmos, pmoss, tech); } // Nand input B TrackRouter inb = new TrackRouterH(tech.m1(), 3, inbY, tech, nand); LayoutLib.newExport(nand, "inb", PortCharacteristic.IN, tech.m1(), 4, inbX, inbY); inb.connect(nand.findExport("inb")); if (symmetry.equals("SY")) { connectInbSymmetric(inb, nmos, pmoss, tech); } else { connectInbAsymmetric(inb, nmos, pmoss, tech); } // Nand input A // above Vdd power rail // m1_wid/2 + m1_m1_sp + m1_wid/2 double inaX = LayoutLib.roundCenterX(pmosa.getSrcDrn(1)) + 2 + 3 + 2; double inaHiY = stdCell.getVddY() + stdCell.getVddWidth()/2 + 3 + 2; // m1_m1_sp + m1_wid/2 LayoutLib.newExport(nand, "ina", PortCharacteristic.IN, tech.m1(), 4, inaX, inaHiY); TrackRouter inaHi = new TrackRouterH(tech.m1(), 3, inaHiY, tech, nand); inaHi.connect(nand.findExport("ina")); inaHi.connect(pmosa.getGate(0, 'T'), tech.getPolyLShapeOffset()); // bottom of cell double gndBot = stdCell.getGndY() - stdCell.getGndWidth()/2; double inaFromGnd = gndBot - 3 - 2; // -m1_m1_sp -m1_wid/2 double nmosBot = nmosTop - fwN.physWid; double inaFromMos = nmosBot - 2 -2.5; // -nd_p1_sp - p1m1_wid/2 double inaLoY = Math.min(inaFromGnd, inaFromMos); TrackRouter inaLo = new TrackRouterH(tech.m1(), 3, inaLoY, tech, nand); for (int i=0; i<fwN.nbFolds; i++) { int dPort=0; double dx=0; switch (i%2) { case 0: dPort=0; dx=-4.0; break; case 1: dPort=2; dx= 4.0; break; } inaLo.connect(nmos.getGate(i*3+dPort, 'B'), dx, tech.getPolyLShapeOffset()); } inaLo.connect(nand.findExport("ina")); // Nand output double outX = inaX + 2 + 3 + 2; // m1_wid/2 + m1_sp + m1_wid/2 LayoutLib.newExport(nand, "out", PortCharacteristic.OUT, tech.m1(), 4, outX, outHiY); TrackRouter outHi = new TrackRouterH(tech.m2(), 4, outHiY, tech, nand); outHi.connect(nand.findExport("out")); for (int i=0; i<pmoss.length; i++) { for (int j=1; j<pmoss[i].nbSrcDrns(); j+=2) { outHi.connect(pmoss[i].getSrcDrn(j)); } } outHi.connect(pmosa.getSrcDrn(1)); TrackRouter outLo = new TrackRouterH(tech.m2(), 4, outLoY, tech, nand); outLo.connect(nand.findExport("out")); for (int i=1; i<nmos.nbSrcDrns(); i+=2) { outLo.connect(nmos.getSrcDrn(i)); } // add wells double wellMinX = 0; double wellMaxX = outX + 2 + 1.5; // m1_wid/2 + m1m1_space/2 stdCell.addNmosWell(wellMinX, wellMaxX, nand); stdCell.addPmosWell(wellMinX, wellMaxX, nand); // add essential bounds stdCell.addEssentialBounds(wellMinX, wellMaxX, nand); // perform Network Consistency Check stdCell.doNCC(nand, nm+"{sch}"); return nand; } }