/******************************************************************************* * This file is part of logisim-evolution. * * logisim-evolution is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * logisim-evolution is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with logisim-evolution. If not, see <http://www.gnu.org/licenses/>. * * Original code by Carl Burch (http://www.cburch.com), 2011. * Subsequent modifications by : * + Haute École Spécialisée Bernoise * http://www.bfh.ch * + Haute École du paysage, d'ingénierie et d'architecture de Genève * http://hepia.hesge.ch/ * + Haute École d'Ingénierie et de Gestion du Canton de Vaud * http://www.heig-vd.ch/ * The project is currently maintained by : * + REDS Institute - HEIG-VD * Yverdon-les-Bains, Switzerland * http://reds.heig-vd.ch *******************************************************************************/ package com.cburch.logisim.std.memory; import java.util.ArrayList; import java.util.HashMap; import java.util.Map; import java.util.SortedMap; import java.util.TreeMap; import com.bfh.logisim.designrulecheck.Netlist; import com.bfh.logisim.designrulecheck.NetlistComponent; import com.bfh.logisim.fpgagui.FPGAReport; import com.bfh.logisim.hdlgenerator.AbstractHDLGeneratorFactory; import com.bfh.logisim.settings.Settings; import com.cburch.logisim.data.AttributeSet; import com.cburch.logisim.instance.StdAttr; import com.cburch.logisim.std.wiring.ClockHDLGeneratorFactory; public class AbstractFlipFlopHDLGeneratorFactory extends AbstractHDLGeneratorFactory { private final static String ActivityLevelStr = "ActiveLevel"; public String ComponentName() { return ""; } @Override public String getComponentStringIdentifier() { return "FF_LATCH"; } @Override public SortedMap<String, Integer> GetInputList(Netlist TheNetlist, AttributeSet attrs) { SortedMap<String, Integer> Inputs = new TreeMap<String, Integer>(); Inputs.put("Reset", 1); Inputs.put("Preset", 1); Inputs.put("Tick", 1); Inputs.put("Clock", 1); Inputs.putAll(GetInputPorts()); return Inputs; } public Map<String, String> GetInputMaps(NetlistComponent ComponentInfo, Netlist Nets, FPGAReport Reporter, String HDLType) { Map<String, String> PortMap = new HashMap<String, String>(); return PortMap; } public Map<String, Integer> GetInputPorts() { Map<String, Integer> Inputs = new HashMap<String, Integer>(); return Inputs; } @Override public ArrayList<String> GetModuleFunctionality(Netlist TheNetlist, AttributeSet attrs, FPGAReport Reporter, String HDLType) { ArrayList<String> Contents = new ArrayList<String>(); String Preamble = (HDLType.equals(Settings.VHDL)) ? "" : "assign "; String AssignmentOperator = (HDLType.equals(Settings.VHDL)) ? " <= " : " = "; String NotOperator = (HDLType.equals(Settings.VHDL)) ? "NOT" : "~"; String SelectOperator = (HDLType.equals(Settings.VHDL)) ? "" : "[" + ActivityLevelStr + "]"; Contents.addAll(MakeRemarkBlock("Here the ouput signals are defined", 3, HDLType)); Contents.add(" " + Preamble + "Q " + AssignmentOperator + "s_current_state_reg" + SelectOperator + ";"); Contents.add(" " + Preamble + "Q_bar" + AssignmentOperator + NotOperator + "(s_current_state_reg" + SelectOperator + ");"); Contents.add(""); Contents.addAll(MakeRemarkBlock("Here the update logic is defined", 3, HDLType)); Contents.addAll(GetUpdateLogic(HDLType)); Contents.add(""); if (HDLType.equals(Settings.VERILOG)) { Contents.addAll(MakeRemarkBlock( "Here the initial register value is defined; for simulation only", 3, HDLType)); Contents.add(" initial"); Contents.add(" begin"); Contents.add(" s_current_state_reg = 0;"); Contents.add(" end"); Contents.add(""); } Contents.addAll(MakeRemarkBlock( "Here the actual state register is defined", 3, HDLType)); if (HDLType.equals(Settings.VHDL)) { Contents.add(" make_memory : PROCESS( clock , Reset , Preset , Tick , s_next_state )"); Contents.add(" VARIABLE temp : std_logic_vector(0 DOWNTO 0);"); Contents.add(" BEGIN"); Contents.add(" temp := std_logic_vector(to_unsigned("+ActivityLevelStr+",1));"); Contents.add(" IF (Reset = '1') THEN s_current_state_reg <= '0';"); Contents.add(" ELSIF (Preset = '1') THEN s_current_state_reg <= '1';"); if (Netlist.IsFlipFlop(attrs)) { Contents.add(" ELSIF (Clock'event AND (Clock = temp(0))) THEN"); } else { Contents.add(" ELSIF (Clock = temp(0)) THEN"); } Contents.add(" IF (Tick = '1') THEN"); Contents.add(" s_current_state_reg <= s_next_state;"); Contents.add(" END IF;"); Contents.add(" END IF;"); Contents.add(" END PROCESS make_memory;"); } else { if (Netlist.IsFlipFlop(attrs)) { Contents.add(" always @(posedge Reset or posedge Preset or negedge Clock)"); Contents.add(" begin"); Contents.add(" if (Reset) s_current_state_reg[0] <= 1'b0;"); Contents.add(" else if (Preset) s_current_state_reg[0] <= 1'b1;"); Contents.add(" else if (Tick) s_current_state_reg[0] <= s_next_state;"); Contents.add(" end"); Contents.add(""); Contents.add(" always @(posedge Reset or posedge Preset or posedge Clock)"); Contents.add(" begin"); Contents.add(" if (Reset) s_current_state_reg[1] <= 1'b0;"); Contents.add(" else if (Preset) s_current_state_reg[1] <= 1'b1;"); Contents.add(" else if (Tick) s_current_state_reg[1] <= s_next_state;"); Contents.add(" end"); } else { Contents.add(" always @(*)"); Contents.add(" begin"); Contents.add(" if (Reset) s_current_state_reg <= 2'b0;"); Contents.add(" else if (Preset) s_current_state_reg <= 2'b1;"); Contents.add(" else if (Tick & (Clock == " + ActivityLevelStr + ")) s_current_state_reg <= {s_next_state,s_next_state};"); Contents.add(" end"); } } Contents.add(""); return Contents; } @Override public SortedMap<String, Integer> GetOutputList(Netlist TheNetlist, AttributeSet attrs) { SortedMap<String, Integer> Outputs = new TreeMap<String, Integer>(); Outputs.put("Q", 1); Outputs.put("Q_bar", 1); return Outputs; } @Override public SortedMap<Integer, String> GetParameterList(AttributeSet attrs) { SortedMap<Integer, String> Parameters = new TreeMap<Integer, String>(); Parameters.put(-1, ActivityLevelStr); return Parameters; } @Override public SortedMap<String, Integer> GetParameterMap(Netlist Nets, NetlistComponent ComponentInfo, FPGAReport Reporter) { SortedMap<String, Integer> ParameterMap = new TreeMap<String, Integer>(); int ActivityLevel = 1; Boolean GatedClock = false; Boolean ActiveLow = false; AttributeSet attrs = ComponentInfo.GetComponent().getAttributeSet(); String ClockNetName = GetClockNetName(ComponentInfo, ComponentInfo.NrOfEnds() - 5, Nets); if (ClockNetName.isEmpty()) { GatedClock = true; // The gated clock detection is now done during DRC // if (Netlist.IsFlipFlop(attrs)) // Reporter.AddWarning("Found a gated clock for component \"" // + ComponentName() + "\" in circuit \"" // + Nets.getCircuitName() + "\""); } if (attrs.containsAttribute(StdAttr.EDGE_TRIGGER)) { if (attrs.getValue(StdAttr.EDGE_TRIGGER) == StdAttr.TRIG_FALLING) ActiveLow = true; } else { if (attrs.containsAttribute(StdAttr.TRIGGER)) { if (attrs.getValue(StdAttr.TRIGGER) == StdAttr.TRIG_FALLING || attrs.getValue(StdAttr.TRIGGER) == StdAttr.TRIG_LOW) ActiveLow = true; } } if (GatedClock && ActiveLow) { ActivityLevel = 0; } ParameterMap.put(ActivityLevelStr, ActivityLevel); return ParameterMap; } @Override public SortedMap<String, String> GetPortMap(Netlist Nets, NetlistComponent ComponentInfo, FPGAReport Reporter, String HDLType) { SortedMap<String, String> PortMap = new TreeMap<String, String>(); Boolean GatedClock = false; Boolean HasClock = true; Boolean ActiveLow = false; String OpenBracket = (HDLType.equals(Settings.VHDL)) ? "(" : "["; String CloseBracket = (HDLType.equals(Settings.VHDL)) ? ")" : "]"; String ZeroBit = (HDLType.equals(Settings.VHDL)) ? "'0'" : "1'b0"; String SetBit = (HDLType.equals(Settings.VHDL)) ? "'1'" : "1'b1"; int nr_of_pins = ComponentInfo.NrOfEnds(); AttributeSet attrs = ComponentInfo.GetComponent().getAttributeSet(); if (!ComponentInfo.EndIsConnected(ComponentInfo.NrOfEnds() - 5)) { Reporter.AddSevereWarning("Component \"" + ComponentName() + "\" in circuit \"" + Nets.getCircuitName() + "\" has no clock connection"); HasClock = false; } String ClockNetName = GetClockNetName(ComponentInfo, ComponentInfo.NrOfEnds() - 5, Nets); if (ClockNetName.isEmpty()) { GatedClock = true; } if (attrs.containsAttribute(StdAttr.EDGE_TRIGGER)) { if (attrs.getValue(StdAttr.EDGE_TRIGGER) == StdAttr.TRIG_FALLING) ActiveLow = true; } else { if (attrs.containsAttribute(StdAttr.TRIGGER)) { if (attrs.getValue(StdAttr.TRIGGER) == StdAttr.TRIG_FALLING || attrs.getValue(StdAttr.TRIGGER) == StdAttr.TRIG_LOW) ActiveLow = true; } } PortMap.putAll(GetNetMap("Reset", true, ComponentInfo, nr_of_pins - 2, Reporter, HDLType, Nets)); PortMap.putAll(GetNetMap("Preset", true, ComponentInfo, nr_of_pins - 1, Reporter, HDLType, Nets)); if (HasClock && !GatedClock && Netlist.IsFlipFlop(attrs)) { if (Nets.RequiresGlobalClockConnection()) { PortMap.put( "Tick", ClockNetName + OpenBracket + Integer .toString(ClockHDLGeneratorFactory.GlobalClockIndex) + CloseBracket); } else { if (ActiveLow) PortMap.put( "Tick", ClockNetName + OpenBracket + Integer .toString(ClockHDLGeneratorFactory.NegativeEdgeTickIndex) + CloseBracket); else PortMap.put( "Tick", ClockNetName + OpenBracket + Integer .toString(ClockHDLGeneratorFactory.PositiveEdgeTickIndex) + CloseBracket); } PortMap.put( "Clock", ClockNetName + OpenBracket + Integer .toString(ClockHDLGeneratorFactory.GlobalClockIndex) + CloseBracket); } else if (!HasClock) { PortMap.put("Tick", ZeroBit); PortMap.put("Clock", ZeroBit); } else { PortMap.put("Tick", SetBit); if (!GatedClock) { if (ActiveLow) PortMap.put( "Clock", ClockNetName + OpenBracket + Integer .toString(ClockHDLGeneratorFactory.InvertedDerivedClockIndex) + CloseBracket); else PortMap.put( "Clock", ClockNetName + OpenBracket + Integer .toString(ClockHDLGeneratorFactory.DerivedClockIndex) + CloseBracket); } else { PortMap.put( "Clock", GetNetName(ComponentInfo, ComponentInfo.NrOfEnds() - 5, true, HDLType, Nets)); } } PortMap.putAll(GetInputMaps(ComponentInfo, Nets, Reporter, HDLType)); PortMap.putAll(GetNetMap("Q", true, ComponentInfo, nr_of_pins - 4, Reporter, HDLType, Nets)); PortMap.putAll(GetNetMap("Q_bar", true, ComponentInfo, nr_of_pins - 3, Reporter, HDLType, Nets)); return PortMap; } @Override public SortedMap<String, Integer> GetRegList(AttributeSet attrs, String HDLType) { SortedMap<String, Integer> Regs = new TreeMap<String, Integer>(); Regs.put("s_current_state_reg", (HDLType.equals(Settings.VHDL)) ? 1 : 2); return Regs; } @Override public String GetSubDir() { return "memory"; } public ArrayList<String> GetUpdateLogic(String HDLType) { ArrayList<String> Contents = new ArrayList<String>(); return Contents; } @Override public SortedMap<String, Integer> GetWireList(AttributeSet attrs, Netlist Nets) { SortedMap<String, Integer> Wires = new TreeMap<String, Integer>(); Wires.put("s_next_state", 1); return Wires; } @Override public boolean HDLTargetSupported(String HDLType, AttributeSet attrs) { return true; } }