/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetix; import static java.lang.Math.abs; import static java.lang.Math.pow; import static org.jenetics.internal.math.base.clamp; import java.util.Random; import org.jenetics.internal.math.random; import org.jenetics.internal.util.require; import org.jenetics.Crossover; import org.jenetics.NumericGene; import org.jenetics.util.MSeq; import org.jenetics.util.RandomRegistry; /** * Performs the simulated binary crossover (SBX) on a {@code Chromosome} of * {@link NumericGene}s such that each position is either crossed contracted or * expanded with a certain probability. The probability distribution is designed * such that the children will lie closer to their parents as is the case with * the single point binary crossover. * <p> * It is implemented as described in Deb, K. and Agrawal, R. B. 1995. Simulated * binary crossover for continuous search space. Complex Systems, 9, pp. 115-148. * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 3.5 * @version 3.5 */ public class SimulatedBinaryCrossover< G extends NumericGene<?, G>, C extends Comparable<? super C> > extends Crossover<G, C> { private final double _contiguity; /** * Create a new <i>simulated binary crossover</i> alterer with the given * parameters. * * @param probability the recombination probability * @param contiguity the contiguity value that specifies how close a child * should be to its parents (larger value means closer). The value * must be greater or equal than 0. Typical values are in the range * [2..5]. * @throws IllegalArgumentException if the {@code probability} is not in the * valid range of {@code [0, 1]} * @throws IllegalArgumentException if {@code contiguity} is smaller than * zero */ public SimulatedBinaryCrossover( final double probability, final double contiguity ) { super(probability); _contiguity = require.nonNegative(contiguity); } /** * Create a new <i>simulated binary crossover</i> alterer with the given * parameters. The <i>contiguity</i> value is set to {@code 2.5}. * * @param probability the recombination probability * @throws IllegalArgumentException if the {@code probability} is not in the * valid range of {@code [0, 1]} * @throws IllegalArgumentException if {@code contiguity} is smaller than * zero */ public SimulatedBinaryCrossover(final double probability) { this(probability, 2.5); } /** * Return the <i>contiguity</i> value of the crossover. * * @return the <i>contiguity</i> value of the crossover */ public double getContiguity() { return _contiguity; } @Override protected int crossover(final MSeq<G> that, final MSeq<G> other) { return (int)random.indexes(RandomRegistry.getRandom(), that.length(), 0.5) .peek(i -> crossover(that, other, i)) .count(); } private void crossover(final MSeq<G> that, final MSeq<G> other, final int i) { final Random random = RandomRegistry.getRandom(); final double u = random.nextDouble(); final double beta; if (u < 0.5) { // If u is smaller than 0.5 perform a contracting crossover. beta = pow(2*u, 1.0/(_contiguity + 1)); } else if (u > 0.5) { // Otherwise perform an expanding crossover. beta = pow(0.5 / (1.0 - u), 1.0/(_contiguity + 1)); } else if (u == 0.5) { beta = 1; } else { beta = 0; } final double v1 = that.get(i).doubleValue(); final double v2 = other.get(i).doubleValue(); final double v = random.nextBoolean() ? ((v1 - v2)*0.5) - beta*0.5*abs(v1 - v2) : ((v1 - v2)*0.5) + beta*0.5*abs(v1 - v2); final double min = that.get(i).getMin().doubleValue(); final double max = that.get(i).getMax().doubleValue(); that.set(i, that.get(i).newInstance(clamp(v, min, max))); } }