/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static org.jenetics.TestUtils.diff; import static org.jenetics.TestUtils.newDoubleGenePopulation; import org.testng.Assert; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import org.jenetics.stat.Histogram; import org.jenetics.stat.LongMomentStatistics; import org.jenetics.util.Range; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> */ public class MeanAltererTest extends AltererTester { @Override public Alterer<DoubleGene, Double> newAlterer(final double p) { return new MeanAlterer<>(p); } @Test public void recombinate() { final int ngenes = 11; final int nchromosomes = 9; final int npopulation = 100; final Population<DoubleGene, Double> p1 = newDoubleGenePopulation( ngenes, nchromosomes, npopulation ); final Population<DoubleGene, Double> p2 = p1.copy(); final int[] selected = new int[]{3, 34}; final MeanAlterer<DoubleGene, Double> crossover = new MeanAlterer<>(0.1); crossover.recombine(p1, selected, 3); Assert.assertEquals(diff(p1, p2), ngenes); } @Test(dataProvider = "alterProbabilityParameters", groups = {"statistics"}) public void alterProbability( final Integer ngenes, final Integer nchromosomes, final Integer npopulation, final Double p ) { final Population<DoubleGene, Double> population = newDoubleGenePopulation( ngenes, nchromosomes, npopulation ); // The mutator to test. final MeanAlterer<DoubleGene, Double> crossover = new MeanAlterer<>(p); final long nallgenes = ngenes*nchromosomes*npopulation; final long N = 100; final double mean = npopulation*p; final long min = 0; final long max = nallgenes; final Range<Long> domain = new Range<>(min, max); final Histogram<Long> histogram = Histogram.ofLong(min, max, 10); final LongMomentStatistics variance = new LongMomentStatistics(); for (int i = 0; i < N; ++i) { final long alterations = crossover.alter(population, 1); histogram.accept(alterations); variance.accept(alterations); } // Normal distribution as approximation for binomial distribution. // TODO: Implement test. // assertDistribution( // histogram, // new NormalDistribution<>(domain, mean, variance.getVariance()) // ); } @DataProvider(name = "alterProbabilityParameters") public Object[][] alterProbabilityParameters() { return TestUtils.alterProbabilityParameters(); } }