/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static org.jenetics.TestUtils.newPermutationDoubleGenePopulation; import static org.jenetics.util.factories.Int; import org.testng.Assert; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import org.jenetics.stat.Histogram; import org.jenetics.stat.LongMomentStatistics; import org.jenetics.util.ISeq; import org.jenetics.util.MSeq; import org.jenetics.util.Range; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> */ public class PartiallyMatchedCrossoverTest { @Test(invocationCount = 10) public void crossover() { final PartiallyMatchedCrossover<Integer, Double> pmco = new PartiallyMatchedCrossover<>(1); final int length = 1000; final MSeq<Integer> alleles = MSeq.<Integer>ofLength(length).fill(Int()); final ISeq<Integer> ialleles = alleles.toISeq(); final MSeq<EnumGene<Integer>> that = alleles.map(i -> new EnumGene<>(i, ialleles)); final MSeq<EnumGene<Integer>> other = alleles.map(i -> new EnumGene<>(i, ialleles)); that.shuffle(); other.shuffle(); final PermutationChromosome<Integer> thatChrom1 = new PermutationChromosome<>(that.toISeq()); Assert.assertTrue(thatChrom1.isValid(), "thatChrom1 not valid"); final PermutationChromosome<Integer> otherChrom1 = new PermutationChromosome<>(other.toISeq()); Assert.assertTrue(otherChrom1.isValid(), "otherChrom1 not valid"); pmco.crossover(that, other); final PermutationChromosome<Integer> thatChrom2 = new PermutationChromosome<>(that.toISeq()); Assert.assertTrue(thatChrom2.isValid(), "thatChrom2 not valid: " + thatChrom2.toSeq()); final PermutationChromosome<Integer> otherChrom2 = new PermutationChromosome<>(other.toISeq()); Assert.assertTrue(otherChrom2.isValid(), "otherChrom2 not valid: " + otherChrom2.toSeq()); Assert.assertFalse(thatChrom1.equals(thatChrom2), "That chromosome must not be equal"); Assert.assertFalse(otherChrom1.equals(otherChrom2), "That chromosome must not be equal"); } @Test public void crossoverWithIllegalChromosome() { final PartiallyMatchedCrossover<Integer, Double> pmco = new PartiallyMatchedCrossover<>(1); final int length = 1000; final MSeq<Integer> alleles = MSeq.<Integer>ofLength(length).fill(Int()); final ISeq<Integer> ialleles = alleles.toISeq(); final MSeq<EnumGene<Integer>> that = alleles.map(i -> new EnumGene<>(i, ialleles)); final MSeq<EnumGene<Integer>> other = alleles.map(i -> new EnumGene<>(i, ialleles)); pmco.crossover(that, other); } @Test(dataProvider = "alterProbabilityParameters", groups = {"statistics"}) public void alterProbability( final Integer ngenes, final Integer nchromosomes, final Integer npopulation, final Double p ) { final Population<EnumGene<Double>, Double> population = newPermutationDoubleGenePopulation(ngenes, nchromosomes, npopulation); // The mutator to test. final PartiallyMatchedCrossover<Double, Double> crossover = new PartiallyMatchedCrossover<>(p); final long nallgenes = ngenes*nchromosomes*npopulation; final long N = 100; final double mean = crossover.getOrder()*npopulation*p; final long min = 0; final long max = nallgenes; final Range<Long> domain = new Range<>(min, max); final Histogram<Long> histogram = Histogram.ofLong(min, max, 10); final LongMomentStatistics variance = new LongMomentStatistics(); for (int i = 0; i < N; ++i) { final long alterations = crossover.alter(population, 1); histogram.accept(alterations); variance.accept(alterations); } // Normal distribution as approximation for binomial distribution. // TODO: Implement test //assertDistribution(histogram, new NormalDistribution<>(domain, mean, variance.getVariance())); } @DataProvider(name = "alterProbabilityParameters") public Object[][] alterProbabilityParameters() { return TestUtils.alterProbabilityParameters(); } }