/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static java.lang.Math.pow; import static java.lang.String.format; import org.jenetics.internal.util.Hash; /** * <p> * An alternative to the "weak" {@code LinearRankSelector} is to assign * survival probabilities to the sorted individuals using an exponential * function. * </p> * <p><img * src="doc-files/exponential-rank-selector.gif" * alt="P(i)=\left(c-1\right)\frac{c^{i-1}}{c^{N}-1}" * >, * </p> * where <i>c</i> must within the range {@code [0..1)}. * * <p> * A small value of <i>c</i> increases the probability of the best phenotypes to * be selected. If <i>c</i> is set to zero, the selection probability of the best * phenotype is set to one. The selection probability of all other phenotypes is * zero. A value near one equalizes the selection probabilities. * </p> * <p> * This selector sorts the population in descending order while calculating the * selection probabilities. * </p> * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 1.0 * @version 2.0 */ public final class ExponentialRankSelector< G extends Gene<?, G>, C extends Comparable<? super C> > extends ProbabilitySelector<G, C> { private final double _c; /** * Create a new exponential rank selector. * * @param c the <i>c</i> value. * @throws IllegalArgumentException if {@code c} is not within the range * {@code [0..1)}. */ public ExponentialRankSelector(final double c) { super(true); if (c < 0.0 || c >= 1.0) { throw new IllegalArgumentException(format( "Value %s is out of range [0..1): ", c )); } _c = c; } /** * Create a new selector with default value of 0.975. */ public ExponentialRankSelector() { this(0.975); } /** * This method sorts the population in descending order while calculating the * selection probabilities. (The method {@link Population#populationSort()} is called * by this method.) */ @Override protected double[] probabilities( final Population<G, C> population, final int count ) { assert population != null : "Population must not be null. "; assert !population.isEmpty() : "Population is empty."; assert count > 0 : "Population to select must be greater than zero. "; final double N = population.size(); final double[] probabilities = new double[population.size()]; final double b = (_c - 1.0)/(pow(_c, N) - 1.0); for (int i = 0; i < probabilities.length; ++i) { probabilities[i] = pow(_c, i)*b; } return probabilities; } @Override public int hashCode() { return Hash.of(getClass()).and(_c).value(); } @Override public boolean equals(final Object obj) { return obj instanceof ExponentialRankSelector && eq(((ExponentialRankSelector)obj)._c, _c); } @Override public String toString() { return format("%s[c=%f]", getClass().getSimpleName(), _c); } }