/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static java.lang.String.format; import static java.util.Objects.requireNonNull; import java.util.Random; import org.jenetics.internal.util.Equality; import org.jenetics.internal.util.Hash; import org.jenetics.util.RandomRegistry; /** * The Monte Carlo selector selects the individuals from a given population * randomly. This selector can be used to measure the performance of a other * selectors. In general, the performance of a selector should be better than * the selection performance of the Monte Carlo selector. * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 1.0 * @version 2.0 */ public final class MonteCarloSelector< G extends Gene<?, G>, C extends Comparable<? super C> > implements Selector<G, C> { public MonteCarloSelector() { } @Override public Population<G, C> select( final Population<G, C> population, final int count, final Optimize opt ) { requireNonNull(population, "Population"); requireNonNull(opt, "Optimization"); if (count < 0) { throw new IllegalArgumentException(format( "Selection count must be greater or equal then zero, but was %d.", count )); } final Population<G, C> selection = new Population<>(count); if (count > 0 && !population.isEmpty()) { final Random random = RandomRegistry.getRandom(); final int size = population.size(); for (int i = 0; i < count; ++i) { final int pos = random.nextInt(size); selection.add(population.get(pos)); } } return selection; } @Override public int hashCode() { return Hash.of(getClass()).value(); } @Override public boolean equals(final Object obj) { return Equality.ofType(this, obj); } @Override public String toString() { return format("%s", getClass().getSimpleName()); } }