/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static org.jenetics.stat.StatisticsAssert.assertDistribution; import static org.jenetics.util.RandomRegistry.using; import java.util.Arrays; import java.util.function.Function; import java.util.stream.IntStream; import org.testng.Assert; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import org.jenetics.internal.util.Named; import org.jenetics.stat.Histogram; import org.jenetics.util.Factory; import org.jenetics.util.LCG64ShiftRandom; import org.jenetics.util.TestData; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> */ public class RouletteWheelSelectorTest extends ProbabilitySelectorTester<RouletteWheelSelector<DoubleGene, Double>> { @Override protected boolean isSorted() { return false; } @Override protected Factory<RouletteWheelSelector<DoubleGene, Double>> factory() { return RouletteWheelSelector::new; } @Test public void minimize() { using(new LCG64ShiftRandom(7345), r -> { final Function<Genotype<IntegerGene>, Integer> ff = g -> g.getChromosome().getGene().getAllele(); final Factory<Phenotype<IntegerGene, Integer>> ptf = () -> Phenotype.of(Genotype.of(IntegerChromosome.of(0, 100)), 1, ff); final Population<IntegerGene, Integer> population = IntStream.range(0, 1000) .mapToObj(i -> ptf.newInstance()) .collect(Population.toPopulation()); final RouletteWheelSelector<IntegerGene, Integer> selector = new RouletteWheelSelector<>(); final double[] p = selector.probabilities(population, 100, Optimize.MINIMUM); Assert.assertTrue(RouletteWheelSelector.sum2one(p), Arrays.toString(p) + " != 1"); }); } @Test public void maximize() { using(new LCG64ShiftRandom(7345), r -> { final Function<Genotype<IntegerGene>, Integer> ff = g -> g.getChromosome().getGene().getAllele(); final Factory<Phenotype<IntegerGene, Integer>> ptf = () -> Phenotype.of(Genotype.of(IntegerChromosome.of(0, 100)), 1, ff); final Population<IntegerGene, Integer> population = IntStream.range(0, 1000) .mapToObj(i -> ptf.newInstance()) .collect(Population.toPopulation()); final RouletteWheelSelector<IntegerGene, Integer> selector = new RouletteWheelSelector<>(); final double[] p = selector.probabilities(population, 100, Optimize.MAXIMUM); Assert.assertTrue(RouletteWheelSelector.sum2one(p), Arrays.toString(p) + " != 1"); }); } @Test(dataProvider = "expectedDistribution", groups = {"statistics"}) public void selectDistribution(final Named<double[]> expected, final Optimize opt) { retry(3, () -> { final int loops = 50; final int npopulation = POPULATION_COUNT; final ThreadLocal<LCG64ShiftRandom> random = new LCG64ShiftRandom.ThreadLocal(); using(random, r -> { final Histogram<Double> distribution = SelectorTester.distribution( new RouletteWheelSelector<>(), opt, npopulation, loops ); assertDistribution(distribution, expected.value, 0.001, 5); }); }); } @DataProvider(name = "expectedDistribution") public Object[][] expectedDistribution() { final String resource = "/org/jenetics/selector/distribution/RouletteWheelSelector"; return Arrays.stream(Optimize.values()) .map(opt -> { final TestData data = TestData.of(resource, opt.toString()); final double[] expected = data.stream() .map(line -> line[0]) .mapToDouble(Double::parseDouble) .toArray(); return new Object[]{Named.of("distribution", expected), opt}; }).toArray(Object[][]::new); } public static void main(final String[] args) { writeDistributionData(Optimize.MAXIMUM); writeDistributionData(Optimize.MINIMUM); } private static void writeDistributionData(final Optimize opt) { final ThreadLocal<LCG64ShiftRandom> random = new LCG64ShiftRandom.ThreadLocal(); using(random, r -> { final int npopulation = POPULATION_COUNT; //final int loops = 2_500_000; final int loops = 5_000_000; printDistributions( System.out, Arrays.asList(""), value -> new RouletteWheelSelector<DoubleGene, Double>(), opt, npopulation, loops ); }); } }