/*
* Java Genetic Algorithm Library (@__identifier__@).
* Copyright (c) @__year__@ Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at)
*/
package org.jenetics;
import static org.jenetics.stat.StatisticsAssert.assertDistribution;
import static org.jenetics.util.RandomRegistry.using;
import java.util.Arrays;
import java.util.function.Function;
import java.util.stream.IntStream;
import org.testng.Assert;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import org.jenetics.internal.util.Named;
import org.jenetics.stat.Histogram;
import org.jenetics.util.Factory;
import org.jenetics.util.LCG64ShiftRandom;
import org.jenetics.util.TestData;
/**
* @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a>
*/
public class RouletteWheelSelectorTest
extends ProbabilitySelectorTester<RouletteWheelSelector<DoubleGene, Double>>
{
@Override
protected boolean isSorted() {
return false;
}
@Override
protected Factory<RouletteWheelSelector<DoubleGene, Double>> factory() {
return RouletteWheelSelector::new;
}
@Test
public void minimize() {
using(new LCG64ShiftRandom(7345), r -> {
final Function<Genotype<IntegerGene>, Integer> ff =
g -> g.getChromosome().getGene().getAllele();
final Factory<Phenotype<IntegerGene, Integer>> ptf = () ->
Phenotype.of(Genotype.of(IntegerChromosome.of(0, 100)), 1, ff);
final Population<IntegerGene, Integer> population = IntStream.range(0, 1000)
.mapToObj(i -> ptf.newInstance())
.collect(Population.toPopulation());
final RouletteWheelSelector<IntegerGene, Integer> selector =
new RouletteWheelSelector<>();
final double[] p = selector.probabilities(population, 100, Optimize.MINIMUM);
Assert.assertTrue(RouletteWheelSelector.sum2one(p), Arrays.toString(p) + " != 1");
});
}
@Test
public void maximize() {
using(new LCG64ShiftRandom(7345), r -> {
final Function<Genotype<IntegerGene>, Integer> ff =
g -> g.getChromosome().getGene().getAllele();
final Factory<Phenotype<IntegerGene, Integer>> ptf = () ->
Phenotype.of(Genotype.of(IntegerChromosome.of(0, 100)), 1, ff);
final Population<IntegerGene, Integer> population = IntStream.range(0, 1000)
.mapToObj(i -> ptf.newInstance())
.collect(Population.toPopulation());
final RouletteWheelSelector<IntegerGene, Integer> selector =
new RouletteWheelSelector<>();
final double[] p = selector.probabilities(population, 100, Optimize.MAXIMUM);
Assert.assertTrue(RouletteWheelSelector.sum2one(p), Arrays.toString(p) + " != 1");
});
}
@Test(dataProvider = "expectedDistribution", groups = {"statistics"})
public void selectDistribution(final Named<double[]> expected, final Optimize opt) {
retry(3, () -> {
final int loops = 50;
final int npopulation = POPULATION_COUNT;
final ThreadLocal<LCG64ShiftRandom> random = new LCG64ShiftRandom.ThreadLocal();
using(random, r -> {
final Histogram<Double> distribution = SelectorTester.distribution(
new RouletteWheelSelector<>(),
opt,
npopulation,
loops
);
assertDistribution(distribution, expected.value, 0.001, 5);
});
});
}
@DataProvider(name = "expectedDistribution")
public Object[][] expectedDistribution() {
final String resource =
"/org/jenetics/selector/distribution/RouletteWheelSelector";
return Arrays.stream(Optimize.values())
.map(opt -> {
final TestData data = TestData.of(resource, opt.toString());
final double[] expected = data.stream()
.map(line -> line[0])
.mapToDouble(Double::parseDouble)
.toArray();
return new Object[]{Named.of("distribution", expected), opt};
}).toArray(Object[][]::new);
}
public static void main(final String[] args) {
writeDistributionData(Optimize.MAXIMUM);
writeDistributionData(Optimize.MINIMUM);
}
private static void writeDistributionData(final Optimize opt) {
final ThreadLocal<LCG64ShiftRandom> random = new LCG64ShiftRandom.ThreadLocal();
using(random, r -> {
final int npopulation = POPULATION_COUNT;
//final int loops = 2_500_000;
final int loops = 5_000_000;
printDistributions(
System.out,
Arrays.asList(""),
value -> new RouletteWheelSelector<DoubleGene, Double>(),
opt,
npopulation,
loops
);
});
}
}