import static org.jenetics.engine.EvolutionResult.toBestPhenotype;
import static org.jenetics.engine.limit.bySteadyFitness;
import java.util.Random;
import java.util.function.Function;
import java.util.stream.Collector;
import java.util.stream.Stream;
import org.jenetics.BitGene;
import org.jenetics.Mutator;
import org.jenetics.Phenotype;
import org.jenetics.RouletteWheelSelector;
import org.jenetics.SinglePointCrossover;
import org.jenetics.TournamentSelector;
import org.jenetics.engine.Engine;
import org.jenetics.engine.EvolutionStatistics;
import org.jenetics.engine.codecs;
import org.jenetics.util.ISeq;
import org.jenetics.util.RandomRegistry;
// The main class.
public class Knapsack {
// This class represents a knapsack item, with a specific
// "size" and "value".
final static class Item {
public final double size;
public final double value;
Item(final double size, final double value) {
this.size = size;
this.value = value;
}
// Create a new random knapsack item.
static Item random() {
final Random r = RandomRegistry.getRandom();
return new Item(
r.nextDouble()*100,
r.nextDouble()*100
);
}
// Collector for summing up the knapsack items.
static Collector<Item, ?, Item> toSum() {
return Collector.of(
() -> new double[2],
(a, b) -> {a[0] += b.size; a[1] += b.value;},
(a, b) -> {a[0] += b[0]; a[1] += b[1]; return a;},
r -> new Item(r[0], r[1])
);
}
}
// Creating the fitness function.
static Function<ISeq<Item>, Double>
fitness(final double size) {
return items -> {
final Item sum = items.stream().collect(Item.toSum());
return sum.size <= size ? sum.value : 0;
};
}
public static void main(final String[] args) {
final int nitems = 15;
final double kssize = nitems*100.0/3.0;
final ISeq<Item> items =
Stream.generate(Item::random)
.limit(nitems)
.collect(ISeq.toISeq());
// Configure and build the evolution engine.
final Engine<BitGene, Double> engine = Engine
.builder(fitness(kssize), codecs.ofSubSet(items))
.populationSize(500)
.survivorsSelector(new TournamentSelector<>(5))
.offspringSelector(new RouletteWheelSelector<>())
.alterers(
new Mutator<>(0.115),
new SinglePointCrossover<>(0.16))
.build();
// Create evolution statistics consumer.
final EvolutionStatistics<Double, ?>
statistics = EvolutionStatistics.ofNumber();
final Phenotype<BitGene, Double> best = engine.stream()
// Truncate the evolution stream after 7 "steady"
// generations.
.limit(bySteadyFitness(7))
// The evolution will stop after maximal 100
// generations.
.limit(100)
// Update the evaluation statistics after
// each generation
.peek(statistics)
// Collect (reduce) the evolution stream to
// its best phenotype.
.collect(toBestPhenotype());
System.out.println(statistics);
System.out.println(best);
}
}