/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static java.lang.String.format; import static org.jenetics.internal.math.base.clamp; import static org.jenetics.internal.math.random.indexes; import java.util.Random; import org.jenetics.internal.util.Hash; import org.jenetics.util.MSeq; import org.jenetics.util.RandomRegistry; /** * The GaussianMutator class performs the mutation of a {@link NumericGene}. * This mutator picks a new value based on a Gaussian distribution around the * current value of the gene. The variance of the new value (before clipping to * the allowed gene range) will be * <p> * <img * src="doc-files/gaussian-mutator-var.gif" * alt="\hat{\sigma }^2 = \left ( \frac{ g_{max} - g_{min} }{4}\right )^2" * > * </p> * The new value will be cropped to the gene's boundaries. * * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 1.0 * @version 3.0 */ public final class GaussianMutator< G extends NumericGene<?, G>, C extends Comparable<? super C> > extends Mutator<G, C> { public GaussianMutator(final double probability) { super(probability); } public GaussianMutator() { this(DEFAULT_ALTER_PROBABILITY); } @Override protected int mutate(final MSeq<G> genes, final double p) { final Random random = RandomRegistry.getRandom(); return (int)indexes(random, genes.length(), p) .peek(i -> genes.set(i, mutate(genes.get(i), random))) .count(); } G mutate(final G gene, final Random random) { final double min = gene.getMin().doubleValue(); final double max = gene.getMax().doubleValue(); final double std = (max - min)*0.25; final double value = gene.doubleValue(); final double gaussian = random.nextGaussian(); return gene.newInstance(clamp(gaussian*std + value, min, max)); } @Override public int hashCode() { return Hash.of(getClass()).and(super.hashCode()).value(); } @Override public boolean equals(final Object obj) { return obj instanceof GaussianMutator && super.equals(obj); } @Override public String toString() { return format( "%s[p=%f]", getClass().getSimpleName(), _probability ); } }