/*
* Java Genetic Algorithm Library (@__identifier__@).
* Copyright (c) @__year__@ Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at)
*/
package org.jenetics;
import java.util.Random;
import org.testng.annotations.Test;
import org.jenetics.stat.Histogram;
import org.jenetics.util.RandomRegistry;
import org.jenetics.util.Range;
/**
* @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a>
*/
public class GaussianMutatorTest extends MutatorTester {
@Override
public Alterer<DoubleGene, Double> newAlterer(double p) {
return new GaussianMutator<>(p);
}
@Test(invocationCount = 20, successPercentage = 95)
public void mutate() {
final Random random = RandomRegistry.getRandom();
final double min = 0;
final double max = 10;
final double mean = 5;
final double var = Math.pow((max - min)/4.0, 2);
final DoubleGene gene = DoubleGene.of(mean, min, max);
final GaussianMutator<DoubleGene, Double> mutator = new GaussianMutator<>();
final Histogram<Double> histogram = Histogram.ofDouble(0.0, 10.0, 10);
for (int i = 0; i < 10000; ++i) {
final double value = mutator.mutate(gene, random).getAllele();
histogram.accept(value);
}
final Range<Double> domain = new Range<>(min, max);
// TODO: Implement test
//assertDistribution(histogram, new NormalDistribution<>(domain, mean, var));
}
}