/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import java.util.Random; import org.testng.annotations.Test; import org.jenetics.stat.Histogram; import org.jenetics.util.RandomRegistry; import org.jenetics.util.Range; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> */ public class GaussianMutatorTest extends MutatorTester { @Override public Alterer<DoubleGene, Double> newAlterer(double p) { return new GaussianMutator<>(p); } @Test(invocationCount = 20, successPercentage = 95) public void mutate() { final Random random = RandomRegistry.getRandom(); final double min = 0; final double max = 10; final double mean = 5; final double var = Math.pow((max - min)/4.0, 2); final DoubleGene gene = DoubleGene.of(mean, min, max); final GaussianMutator<DoubleGene, Double> mutator = new GaussianMutator<>(); final Histogram<Double> histogram = Histogram.ofDouble(0.0, 10.0, 10); for (int i = 0; i < 10000; ++i) { final double value = mutator.mutate(gene, random).getAllele(); histogram.accept(value); } final Range<Double> domain = new Range<>(min, max); // TODO: Implement test //assertDistribution(histogram, new NormalDistribution<>(domain, mean, var)); } }