/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import java.util.Random; import java.util.function.Function; import org.jenetics.internal.util.require; import org.jenetics.util.ISeq; import org.jenetics.util.MSeq; import org.jenetics.util.RandomRegistry; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> */ class TestUtils { private TestUtils() {require.noInstance();} /** * Data for alter count tests. */ public static Object[][] alterCountParameters() { return new Object[][] { // ngenes, nchromosomes npopulation { 1, 1, 100 }, { 5, 1, 100 }, { 80, 1, 100 }, { 1, 2, 100 }, { 5, 2, 100 }, { 80, 2, 100 }, { 1, 15, 100 }, { 5, 15, 100 }, { 80, 15, 100 }, { 1, 1, 150 }, { 5, 1, 150 }, { 80, 1, 150 }, { 1, 2, 150 }, { 5, 2, 150 }, { 80, 2, 150 }, { 1, 15, 150 }, { 5, 15, 150 }, { 80, 15, 150 }, { 1, 1, 500 }, { 5, 1, 500 }, { 80, 1, 500 }, { 1, 2, 500 }, { 5, 2, 500 }, { 80, 2, 500 }, { 1, 15, 500 }, { 5, 15, 500 }, { 80, 15, 500 } }; } /** * Data for alter probability tests. */ public static Object[][] alterProbabilityParameters() { return new Object[][] { // ngenes, nchromosomes npopulation { 20, 20, 20, 0.5 }, { 1, 1, 150, 0.15 }, { 5, 1, 150, 0.15 }, { 80, 1, 150, 0.15 }, { 1, 2, 150, 0.15 }, { 5, 2, 150, 0.15 }, { 80, 2, 150, 0.15 }, { 1, 15, 150, 0.15 }, { 5, 15, 150, 0.15 }, { 80, 15, 150, 0.15 }, { 1, 1, 150, 0.5 }, { 5, 1, 150, 0.5 }, { 80, 1, 150, 0.5 }, { 1, 2, 150, 0.5 }, { 5, 2, 150, 0.5 }, { 80, 2, 150, 0.5 }, { 1, 15, 150, 0.5 }, { 5, 15, 150, 0.5 }, { 80, 15, 150, 0.5 }, { 1, 1, 150, 0.85 }, { 5, 1, 150, 0.85 }, { 80, 1, 150, 0.85 }, { 1, 2, 150, 0.85 }, { 5, 2, 150, 0.85 }, { 80, 2, 150, 0.85 }, { 1, 15, 150, 0.85 }, { 5, 15, 150, 0.85 }, { 80, 15, 150, 0.85 } }; } /** * Create a population of DoubleGenes */ public static Population<DoubleGene, Double> newDoubleGenePopulation( final int ngenes, final int nchromosomes, final int npopulation ) { final MSeq<DoubleChromosome> chromosomes = MSeq.ofLength(nchromosomes); for (int i = 0; i < nchromosomes; ++i) { chromosomes.set(i, DoubleChromosome.of(0, 10, ngenes)); } final Genotype<DoubleGene> genotype = new Genotype<>(chromosomes.toISeq()); final Population<DoubleGene, Double> population = new Population<>(npopulation); for (int i = 0; i < npopulation; ++i) { population.add(Phenotype.of(genotype.newInstance(), 0, FF).evaluate()); } return population; } public static Population<EnumGene<Double>, Double> newPermutationDoubleGenePopulation( final int ngenes, final int nchromosomes, final int npopulation ) { final Random random = new Random(122343); final MSeq<Double> alleles = MSeq.ofLength(ngenes); for (int i = 0; i < ngenes; ++i) { alleles.set(i, random.nextDouble()*10); } final ISeq<Double> ialleles = alleles.toISeq(); final MSeq<PermutationChromosome<Double>> chromosomes = MSeq.ofLength(nchromosomes); for (int i = 0; i < nchromosomes; ++i) { chromosomes.set(i, PermutationChromosome.of(ialleles)); } final Genotype<EnumGene<Double>> genotype = new Genotype<>(chromosomes.toISeq()); final Population<EnumGene<Double>, Double> population = new Population<>(npopulation); for (int i = 0; i < npopulation; ++i) { population.add(Phenotype.of(genotype.newInstance(), 0, PFF)); } return population; } private static final Function<Genotype<EnumGene<Double>>, Double> PFF = gt -> gt.getGene().getAllele(); /** * Count the number of different genes. */ public static int diff ( final Population<DoubleGene, Double> p1, final Population<DoubleGene, Double> p2 ) { int count = 0; for (int i = 0; i < p1.size(); ++i) { final Genotype<?> gt1 = p1.get(i).getGenotype(); final Genotype<?> gt2 = p2.get(i).getGenotype(); for (int j = 0; j < gt1.length(); ++j) { final Chromosome<?> c1 = gt1.getChromosome(j); final Chromosome<?> c2 = gt2.getChromosome(j); for (int k = 0; k < c1.length(); ++k) { if (!c1.getGene(k).equals(c2.getGene(k))) { ++count; } } } } return count; } /** * 'Identity' fitness function. */ public static final Function<Genotype<DoubleGene>, Double> FF = gt -> gt.getGene().getAllele(); public static Phenotype<DoubleGene, Double> newDoublePhenotype(final double value) { return Phenotype.of(Genotype.of( DoubleChromosome.of(DoubleGene.of(value, 0, 10))), 0, FF ).evaluate(); } public static Phenotype<DoubleGene, Double> newDoublePhenotype( final double min, final double max ) { final Random random = RandomRegistry.getRandom(); return newDoublePhenotype(random.nextDouble()*(max - min) + min); } public static Phenotype<DoubleGene, Double> newDoublePhenotype() { return newDoublePhenotype(0, 10); } public static Population<DoubleGene, Double> newDoublePopulation( final int length, final double min, final double max ) { final Population<DoubleGene, Double> population = new Population<>(length); for (int i = 0; i < length; ++i) { population.add(newDoublePhenotype(min, max)); } return population; } public static Population<DoubleGene, Double> newDoublePopulation(final int length) { return newDoublePopulation(length, 0, 10); } }