/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static java.lang.Math.min; import static java.lang.String.format; import java.util.Random; import org.jenetics.internal.util.Hash; import org.jenetics.util.ISeq; import org.jenetics.util.MSeq; import org.jenetics.util.Mean; import org.jenetics.util.RandomRegistry; import org.jenetics.util.Seq; /** * <p> * The order ({@link #getOrder()}) of this Recombination implementation is two. * </p> * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 1.0 * @version 3.6 */ public final class MeanAlterer< G extends Gene<?, G> & Mean<G>, C extends Comparable<? super C> > extends Recombinator<G, C> { /** * Constructs an alterer with a given recombination probability. * * @param probability the crossover probability. * @throws IllegalArgumentException if the {@code probability} is not in the * valid range of {@code [0, 1]}. */ public MeanAlterer(final double probability) { super(probability, 2); } /** * Create a new alterer with alter probability of {@code 0.05}. */ public MeanAlterer() { this(0.05); } @Override protected int recombine( final Population<G, C> population, final int[] individuals, final long generation ) { final Random random = RandomRegistry.getRandom(); final Phenotype<G, C> pt1 = population.get(individuals[0]); final Phenotype<G, C> pt2 = population.get(individuals[1]); final Genotype<G> gt1 = pt1.getGenotype(); final Genotype<G> gt2 = pt2.getGenotype(); //Choosing the Chromosome index for crossover. final int cindex = random.nextInt(min(gt1.length(), gt2.length())); final MSeq<Chromosome<G>> c1 = gt1.toSeq().copy(); final ISeq<Chromosome<G>> c2 = gt2.toSeq(); // Calculate the mean value of the gene array. final MSeq<G> mean = mean( c1.get(cindex).toSeq().copy(), c2.get(cindex).toSeq() ); c1.set(cindex, c1.get(cindex).newInstance(mean.toISeq())); population.set( individuals[0], pt1.newInstance(gt1.newInstance(c1.toISeq()), generation) ); return 1; } private static <G extends Gene<?, G> & Mean<G>> MSeq<G> mean(final MSeq<G> a, final Seq<G> b) { for (int i = a.length(); --i >= 0;) { a.set(i, a.get(i).mean(b.get(i))); } return a; } @Override public int hashCode() { return Hash.of(getClass()).and(super.hashCode()).value(); } @Override public boolean equals(final Object obj) { return obj instanceof MeanAlterer && super.equals(obj); } @Override public String toString() { return format("%s[p=%f]", getClass().getSimpleName(), _probability); } }