/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static org.jenetics.stat.StatisticsAssert.assertUniformDistribution; import static org.jenetics.util.RandomRegistry.using; import java.util.Random; import org.testng.Assert; import org.testng.annotations.Test; import org.jenetics.stat.Histogram; import org.jenetics.stat.MinMax; /** * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> */ public class IntegerChromosomeTest extends NumericChromosomeTester<Integer, IntegerGene> { private final IntegerChromosome _factory = new IntegerChromosome( 0, Integer.MAX_VALUE, 500 ); @Override protected IntegerChromosome factory() { return _factory; } @Test(invocationCount = 20, successPercentage = 95) public void newInstanceDistribution() { using(new Random(12345), r -> { final int min = 0; final int max = 10000000; final MinMax<Integer> mm = MinMax.of(); final Histogram<Integer> histogram = Histogram.ofInteger(min, max, 10); for (int i = 0; i < 1000; ++i) { final IntegerChromosome chromosome = new IntegerChromosome(min, max, 500); chromosome.toSeq().forEach(g -> { mm.accept(g.getAllele()); histogram.accept(g.getAllele()); }); } Assert.assertTrue(mm.getMin().compareTo(0) >= 0); Assert.assertTrue(mm.getMax().compareTo(100) <= 100); assertUniformDistribution(histogram); }); } }