/*
* Java Genetic Algorithm Library (@__identifier__@).
* Copyright (c) @__year__@ Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at)
*/
package org.jenetics.example;
import static org.jenetics.engine.EvolutionResult.toBestPhenotype;
import static org.jenetics.engine.limit.bySteadyFitness;
import java.util.Random;
import java.util.function.Function;
import java.util.stream.Collector;
import java.util.stream.Stream;
import org.jenetics.BitChromosome;
import org.jenetics.BitGene;
import org.jenetics.Genotype;
import org.jenetics.Mutator;
import org.jenetics.Phenotype;
import org.jenetics.RouletteWheelSelector;
import org.jenetics.SinglePointCrossover;
import org.jenetics.TournamentSelector;
import org.jenetics.engine.Engine;
import org.jenetics.engine.EvolutionStatistics;
import org.jenetics.util.RandomRegistry;
// This class represents a knapsack item, with a specific
// "size" and "value".
final class Item {
public final double size;
public final double value;
Item(final double size, final double value) {
this.size = size;
this.value = value;
}
// Create a new random knapsack item.
static Item random() {
final Random r = RandomRegistry.getRandom();
return new Item(r.nextDouble()*100, r.nextDouble()*100);
}
// Create a new collector for summing up the knapsack items.
static Collector<Item, ?, Item> toSum() {
return Collector.of(
() -> new double[2],
(a, b) -> {a[0] += b.size; a[1] += b.value;},
(a, b) -> {a[0] += b[0]; a[1] += b[1]; return a;},
r -> new Item(r[0], r[1])
);
}
}
// The knapsack fitness function class, which is parametrized with
// the available items and the size of the knapsack.
final class FF
implements Function<Genotype<BitGene>, Double>
{
private final Item[] items;
private final double size;
public FF(final Item[] items, final double size) {
this.items = items;
this.size = size;
}
@Override
public Double apply(final Genotype<BitGene> gt) {
final Item sum = ((BitChromosome)gt.getChromosome()).ones()
.mapToObj(i -> items[i])
.collect(Item.toSum());
return sum.size <= this.size ? sum.value : 0;
}
}
// The main class.
public class Knapsack {
public static void main(final String[] args) {
final int nitems = 15;
final double kssize = nitems*100.0/3.0;
final FF ff = new FF(
Stream.generate(Item::random)
.limit(nitems)
.toArray(Item[]::new),
kssize
);
// Configure and build the evolution engine.
final Engine<BitGene, Double> engine = Engine
.builder(ff, BitChromosome.of(nitems, 0.5))
.populationSize(500)
.survivorsSelector(new TournamentSelector<>(5))
.offspringSelector(new RouletteWheelSelector<>())
.alterers(
new Mutator<>(0.115),
new SinglePointCrossover<>(0.16))
.build();
// Create evolution statistics consumer.
final EvolutionStatistics<Double, ?>
statistics = EvolutionStatistics.ofNumber();
final Phenotype<BitGene, Double> best = engine.stream()
// Truncate the evolution stream after 7 "steady"
// generations.
.limit(bySteadyFitness(7))
// The evolution will stop after maximal 100
// generations.
.limit(100)
// Update the evaluation statistics after
// each generation
.peek(statistics)
// Collect (reduce) the evolution stream to
// its best phenotype.
.collect(toBestPhenotype());
System.out.println(statistics);
System.out.println(best);
}
}