/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static java.util.Objects.requireNonNull; import org.jenetics.internal.util.Equality; import org.jenetics.internal.util.Hash; import org.jenetics.util.RandomRegistry; /** * {@code StochasticUniversalSelector} is a method for selecting a * population according to some given probability in a way that minimize chance * fluctuations. It can be viewed as a type of roulette game where now we have * P equally spaced points which we spin. * * <p> * <img src="doc-files/StochasticUniversalSelection.svg" width="400" * alt="Selector"> * </p> * * The figure above shows how the stochastic-universal selection works; <i>n</i> * is the number of individuals to select. * * @see <a href="https://secure.wikimedia.org/wikipedia/en/wiki/Stochastic_universal_sampling"> * Wikipedia: Stochastic universal sampling * </a> * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 1.0 * @version 3.2 */ public class StochasticUniversalSelector< G extends Gene<?, G>, N extends Number & Comparable<? super N> > extends RouletteWheelSelector<G, N> { public StochasticUniversalSelector() { super(true); } /** * This method sorts the population in descending order while calculating the * selection probabilities. (The method {@link Population#populationSort()} is called * by this method.) */ @Override public Population<G, N> select( final Population<G, N> population, final int count, final Optimize opt ) { requireNonNull(population, "Population"); if (count < 0) { throw new IllegalArgumentException( "Selection count must be greater or equal then zero, but was " + count ); } final Population<G, N> selection = new Population<>(count); if (count == 0 || population.isEmpty()) { return selection; } final Population<G, N> pop = copy(population); final double[] probabilities = probabilities(pop, count, opt); assert pop.size() == probabilities.length; //Calculating the equally spaces random points. final double delta = 1.0/count; final double[] points = new double[count]; points[0] = RandomRegistry.getRandom().nextDouble()*delta; for (int i = 1; i < count; ++i) { points[i] = delta*i; } int j = 0; double prop = 0; for (int i = 0; i < count; ++i) { while (points[i] > prop) { prop += probabilities[j]; ++j; } selection.add(pop.get(j%pop.size())); } return selection; } @Override public int hashCode() { return Hash.of(getClass()).and(super.hashCode()).value(); } @Override public boolean equals(final Object obj) { return Equality.of(this, obj).test(super::equals); } @Override public String toString() { return getClass().getSimpleName(); } }