/*
* Java Genetic Algorithm Library (@__identifier__@).
* Copyright (c) @__year__@ Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at)
*/
package org.jenetics.stat;
import static java.lang.String.format;
import java.util.Arrays;
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
import org.apache.commons.math3.stat.inference.ChiSquareTest;
import org.testng.Assert;
import org.jenetics.internal.util.require;
/**
* @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a>
*/
public final class StatisticsAssert {
private StatisticsAssert() {require.noInstance();}
public static <C extends Comparable<? super C>> void assertDistribution(
final Histogram<C> histogram,
final Distribution<C> distribution
) {
final double χ2 = histogram.χ2(distribution.getCDF());
final int degreeOfFreedom = histogram.length();
assert (degreeOfFreedom > 0);
final double maxChi = chi(0.999, degreeOfFreedom)*2;
if (χ2 > maxChi) {
System.out.println(format(
"The histogram %s doesn't follow the distribution %s. \n" +
"χ2 must be smaller than %f but was %f",
histogram, distribution,
maxChi, χ2
));
}
Assert.assertTrue(
χ2 <= maxChi,
format(
"The histogram %s doesn't follow the distribution %s. \n" +
"χ2 must be smaller than %f but was %f",
histogram, distribution,
maxChi, χ2
)
);
}
public static <C extends Comparable<? super C>> void assertDistribution(
final Histogram<C> distribution,
final double[] expected
) {
assertDistribution(distribution, expected, 0.05);
}
public static <C extends Comparable<? super C>> void assertDistribution(
final Histogram<C> distribution,
final double[] expected,
final double alpha,
final double safety
) {
final double[] exp = Arrays.stream(expected)
.map(v -> Math.max(v, Double.MIN_VALUE))
.toArray();
final long[] dist = distribution.getHistogram();
final double χ2 = new ChiSquareTest().chiSquare(exp, dist);
final double max_χ2 = chi(1 - alpha, distribution.length());
final boolean reject = χ2 > max_χ2*safety;
//final boolean reject = new ChiSquareTest().chiSquareTest(exp, dist, alpha);
Assert.assertFalse(
reject,
format(
"The histogram doesn't follow the given distribution." +
"χ2 must be smaller than %f but was %f",
max_χ2, χ2
)
);
}
public static <C extends Comparable<? super C>> void assertDistribution(
final Histogram<C> distribution,
final double[] expected,
final double alpha
) {
assertDistribution(distribution, expected, alpha, 1.75);
}
private static double chi(final double p, final int degreeOfFreedom) {
return new ChiSquaredDistribution(degreeOfFreedom)
.inverseCumulativeProbability(p);
}
public static <C extends Comparable<? super C>> void assertUniformDistribution(
final Histogram<C> histogram
) {
final double[] expected = dist.uniform(histogram.length());
assertDistribution(histogram, expected);
}
}