/* * Java Genetic Algorithm Library (@__identifier__@). * Copyright (c) @__year__@ Franz Wilhelmstötter * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: * Franz Wilhelmstötter (franz.wilhelmstoetter@gmx.at) */ package org.jenetics; import static java.lang.Math.min; import java.util.Random; import org.jenetics.util.MSeq; import org.jenetics.util.RandomRegistry; /** * <p> * Performs a <a href="http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29"> * Crossover</a> of two {@link Chromosome}. This crossover implementation can * handle genotypes with different length (different number of chromosomes). It * is guaranteed that chromosomes with the the same (genotype) index are chosen * for <em>crossover</em>. * </p> * <p> * The order ({@link #getOrder()}) of this Recombination implementation is two. * </p> * * @param <G> the gene type. * * @author <a href="mailto:franz.wilhelmstoetter@gmx.at">Franz Wilhelmstötter</a> * @since 1.0 * @version 3.6 */ public abstract class Crossover< G extends Gene<?, G>, C extends Comparable<? super C> > extends Recombinator<G, C> { /** * Constructs an alterer with a given recombination probability. * * @param probability the recombination probability * @throws IllegalArgumentException if the {@code probability} is not in the * valid range of {@code [0, 1]} */ protected Crossover(final double probability) { super(probability, 2); } @Override protected final int recombine( final Population<G, C> population, final int[] individuals, final long generation ) { assert individuals.length == 2 : "Required order of 2"; final Random random = RandomRegistry.getRandom(); final Phenotype<G, C> pt1 = population.get(individuals[0]); final Phenotype<G, C> pt2 = population.get(individuals[1]); final Genotype<G> gt1 = pt1.getGenotype(); final Genotype<G> gt2 = pt2.getGenotype(); //Choosing the Chromosome index for crossover. final int chIndex = random.nextInt(min(gt1.length(), gt2.length())); final MSeq<Chromosome<G>> c1 = gt1.toSeq().copy(); final MSeq<Chromosome<G>> c2 = gt2.toSeq().copy(); final MSeq<G> genes1 = c1.get(chIndex).toSeq().copy(); final MSeq<G> genes2 = c2.get(chIndex).toSeq().copy(); crossover(genes1, genes2); c1.set(chIndex, c1.get(chIndex).newInstance(genes1.toISeq())); c2.set(chIndex, c2.get(chIndex).newInstance(genes2.toISeq())); //Creating two new Phenotypes and exchanging it with the old. population.set( individuals[0], pt1.newInstance(gt1.newInstance(c1.toISeq()), generation) ); population.set( individuals[1], pt2.newInstance(gt1.newInstance(c2.toISeq()), generation) ); return getOrder(); } /** * Template method which performs the crossover. The arguments given are * mutable non null arrays of the same length. * * @param that the genes of the first chromosome * @param other the genes of the other chromosome * @return the number of altered genes */ protected abstract int crossover(final MSeq<G> that, final MSeq<G> other); }