/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package java.util.concurrent; import java.util.*; import java.util.concurrent.locks.*; /** {@collect.stats} * {@description.open} * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on * linked nodes. * * <p> The optional capacity bound constructor argument serves as a * way to prevent excessive expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * deque above capacity. * * <p>Most operations run in constant time (ignoring time spent * blocking). Exceptions include {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link * #removeLastOccurrence removeLastOccurrence}, {@link #contains * contains}, {@link #iterator iterator.remove()}, and the bulk * operations, all of which run in linear time. * * <p>This class and its iterator implement all of the * <em>optional</em> methods of the {@link Collection} and {@link * Iterator} interfaces. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * {@description.close} * * @since 1.6 * @author Doug Lea * @param <E> the type of elements held in this collection */ public class LinkedBlockingDeque<E> extends AbstractQueue<E> implements BlockingDeque<E>, java.io.Serializable { /* * Implemented as a simple doubly-linked list protected by a * single lock and using conditions to manage blocking. */ /* * We have "diamond" multiple interface/abstract class inheritance * here, and that introduces ambiguities. Often we want the * BlockingDeque javadoc combined with the AbstractQueue * implementation, so a lot of method specs are duplicated here. */ private static final long serialVersionUID = -387911632671998426L; /** {@collect.stats} * {@description.open} * Doubly-linked list node class * {@description.close} */ static final class Node<E> { E item; Node<E> prev; Node<E> next; Node(E x, Node<E> p, Node<E> n) { item = x; prev = p; next = n; } } /** {@collect.stats} * {@description.open} * Pointer to first node * {@description.close} */ private transient Node<E> first; /** {@collect.stats} * {@description.open} * Pointer to last node * {@description.close} */ private transient Node<E> last; /** {@collect.stats} * {@description.open} * Number of items in the deque * {@description.close} */ private transient int count; /** {@collect.stats} * {@description.open} * Maximum number of items in the deque * {@description.close} */ private final int capacity; /** {@collect.stats} * {@description.open} * Main lock guarding all access * {@description.close} */ private final ReentrantLock lock = new ReentrantLock(); /** {@collect.stats} * {@description.open} * Condition for waiting takes * {@description.close} */ private final Condition notEmpty = lock.newCondition(); /** {@collect.stats} * {@description.open} * Condition for waiting puts * {@description.close} */ private final Condition notFull = lock.newCondition(); /** {@collect.stats} * {@description.open} * Creates a <tt>LinkedBlockingDeque</tt> with a capacity of * {@link Integer#MAX_VALUE}. * {@description.close} */ public LinkedBlockingDeque() { this(Integer.MAX_VALUE); } /** {@collect.stats} * {@description.open} * Creates a <tt>LinkedBlockingDeque</tt> with the given (fixed) capacity. * {@description.close} * * @param capacity the capacity of this deque * @throws IllegalArgumentException if <tt>capacity</tt> is less than 1 */ public LinkedBlockingDeque(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; } /** {@collect.stats} * {@description.open} * Creates a <tt>LinkedBlockingDeque</tt> with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of * the given collection, added in traversal order of the * collection's iterator. * {@description.close} * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public LinkedBlockingDeque(Collection<? extends E> c) { this(Integer.MAX_VALUE); for (E e : c) add(e); } // Basic linking and unlinking operations, called only while holding lock /** {@collect.stats} * {@description.open} * Links e as first element, or returns false if full. * {@description.close} */ private boolean linkFirst(E e) { if (count >= capacity) return false; ++count; Node<E> f = first; Node<E> x = new Node<E>(e, null, f); first = x; if (last == null) last = x; else f.prev = x; notEmpty.signal(); return true; } /** {@collect.stats} * {@description.open} * Links e as last element, or returns false if full. * {@description.close} */ private boolean linkLast(E e) { if (count >= capacity) return false; ++count; Node<E> l = last; Node<E> x = new Node<E>(e, l, null); last = x; if (first == null) first = x; else l.next = x; notEmpty.signal(); return true; } /** {@collect.stats} * {@description.open} * Removes and returns first element, or null if empty. * {@description.close} */ private E unlinkFirst() { Node<E> f = first; if (f == null) return null; Node<E> n = f.next; first = n; if (n == null) last = null; else n.prev = null; --count; notFull.signal(); return f.item; } /** {@collect.stats} * {@description.open} * Removes and returns last element, or null if empty. * {@description.close} */ private E unlinkLast() { Node<E> l = last; if (l == null) return null; Node<E> p = l.prev; last = p; if (p == null) first = null; else p.next = null; --count; notFull.signal(); return l.item; } /** {@collect.stats} * {@description.open} * Unlink e * {@description.close} */ private void unlink(Node<E> x) { Node<E> p = x.prev; Node<E> n = x.next; if (p == null) { if (n == null) first = last = null; else { n.prev = null; first = n; } } else if (n == null) { p.next = null; last = p; } else { p.next = n; n.prev = p; } --count; notFull.signalAll(); } // BlockingDeque methods /** {@collect.stats} * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void addFirst(E e) { if (!offerFirst(e)) throw new IllegalStateException("Deque full"); } /** {@collect.stats} * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void addLast(E e) { if (!offerLast(e)) throw new IllegalStateException("Deque full"); } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} */ public boolean offerFirst(E e) { if (e == null) throw new NullPointerException(); lock.lock(); try { return linkFirst(e); } finally { lock.unlock(); } } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} */ public boolean offerLast(E e) { if (e == null) throw new NullPointerException(); lock.lock(); try { return linkLast(e); } finally { lock.unlock(); } } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void putFirst(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); lock.lock(); try { while (!linkFirst(e)) notFull.await(); } finally { lock.unlock(); } } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void putLast(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); lock.lock(); try { while (!linkLast(e)) notFull.await(); } finally { lock.unlock(); } } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offerFirst(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (;;) { if (linkFirst(e)) return true; if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } } finally { lock.unlock(); } } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offerLast(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (;;) { if (linkLast(e)) return true; if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } } finally { lock.unlock(); } } /** {@collect.stats} * @throws NoSuchElementException {@inheritDoc} */ public E removeFirst() { E x = pollFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** {@collect.stats} * @throws NoSuchElementException {@inheritDoc} */ public E removeLast() { E x = pollLast(); if (x == null) throw new NoSuchElementException(); return x; } public E pollFirst() { lock.lock(); try { return unlinkFirst(); } finally { lock.unlock(); } } public E pollLast() { lock.lock(); try { return unlinkLast(); } finally { lock.unlock(); } } public E takeFirst() throws InterruptedException { lock.lock(); try { E x; while ( (x = unlinkFirst()) == null) notEmpty.await(); return x; } finally { lock.unlock(); } } public E takeLast() throws InterruptedException { lock.lock(); try { E x; while ( (x = unlinkLast()) == null) notEmpty.await(); return x; } finally { lock.unlock(); } } public E pollFirst(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (;;) { E x = unlinkFirst(); if (x != null) return x; if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } } finally { lock.unlock(); } } public E pollLast(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (;;) { E x = unlinkLast(); if (x != null) return x; if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } } finally { lock.unlock(); } } /** {@collect.stats} * @throws NoSuchElementException {@inheritDoc} */ public E getFirst() { E x = peekFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** {@collect.stats} * @throws NoSuchElementException {@inheritDoc} */ public E getLast() { E x = peekLast(); if (x == null) throw new NoSuchElementException(); return x; } public E peekFirst() { lock.lock(); try { return (first == null) ? null : first.item; } finally { lock.unlock(); } } public E peekLast() { lock.lock(); try { return (last == null) ? null : last.item; } finally { lock.unlock(); } } public boolean removeFirstOccurrence(Object o) { if (o == null) return false; lock.lock(); try { for (Node<E> p = first; p != null; p = p.next) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } public boolean removeLastOccurrence(Object o) { if (o == null) return false; lock.lock(); try { for (Node<E> p = last; p != null; p = p.prev) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } // BlockingQueue methods /** {@collect.stats} * {@description.open} * Inserts the specified element at the end of this deque unless it would * violate capacity restrictions. When using a capacity-restricted deque, * it is generally preferable to use method {@link #offer(Object) offer}. * * <p>This method is equivalent to {@link #addLast}. * {@description.close} * * @throws IllegalStateException if the element cannot be added at this * time due to capacity restrictions * @throws NullPointerException if the specified element is null */ public boolean add(E e) { addLast(e); return true; } /** {@collect.stats} * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { return offerLast(e); } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void put(E e) throws InterruptedException { putLast(e); } /** {@collect.stats} * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** {@collect.stats} * {@description.open} * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * * <p>This method is equivalent to {@link #removeFirst() removeFirst}. * {@description.close} * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ public E remove() { return removeFirst(); } public E poll() { return pollFirst(); } public E take() throws InterruptedException { return takeFirst(); } public E poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** {@collect.stats} * {@description.open} * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. * * <p>This method is equivalent to {@link #getFirst() getFirst}. * {@description.close} * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ public E element() { return getFirst(); } public E peek() { return peekFirst(); } /** {@collect.stats} * {@description.open} * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current <tt>size</tt> of this deque. * * <p>Note that you <em>cannot</em> always tell if an attempt to insert * an element will succeed by inspecting <tt>remainingCapacity</tt> * because it may be the case that another thread is about to * insert or remove an element. * {@description.close} */ public int remainingCapacity() { lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } /** {@collect.stats} * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); lock.lock(); try { for (Node<E> p = first; p != null; p = p.next) c.add(p.item); int n = count; count = 0; first = last = null; notFull.signalAll(); return n; } finally { lock.unlock(); } } /** {@collect.stats} * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); lock.lock(); try { int n = 0; while (n < maxElements && first != null) { c.add(first.item); first.prev = null; first = first.next; --count; ++n; } if (first == null) last = null; notFull.signalAll(); return n; } finally { lock.unlock(); } } // Stack methods /** {@collect.stats} * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void push(E e) { addFirst(e); } /** {@collect.stats} * @throws NoSuchElementException {@inheritDoc} */ public E pop() { return removeFirst(); } // Collection methods /** {@collect.stats} * {@description.open} * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element <tt>e</tt> such that * <tt>o.equals(e)</tt> (if such an element exists). * Returns <tt>true</tt> if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * <p>This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * {@description.close} * * @param o element to be removed from this deque, if present * @return <tt>true</tt> if this deque changed as a result of the call */ public boolean remove(Object o) { return removeFirstOccurrence(o); } /** {@collect.stats} * {@description.open} * Returns the number of elements in this deque. * {@description.close} * * @return the number of elements in this deque */ public int size() { lock.lock(); try { return count; } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Returns <tt>true</tt> if this deque contains the specified element. * More formally, returns <tt>true</tt> if and only if this deque contains * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>. * {@description.close} * * @param o object to be checked for containment in this deque * @return <tt>true</tt> if this deque contains the specified element */ public boolean contains(Object o) { if (o == null) return false; lock.lock(); try { for (Node<E> p = first; p != null; p = p.next) if (o.equals(p.item)) return true; return false; } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Variant of removeFirstOccurrence needed by iterator.remove. * Searches for the node, not its contents. * {@description.close} */ boolean removeNode(Node<E> e) { lock.lock(); try { for (Node<E> p = first; p != null; p = p.next) { if (p == e) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). * * <p>The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * {@description.close} * * @return an array containing all of the elements in this deque */ public Object[] toArray() { lock.lock(); try { Object[] a = new Object[count]; int k = 0; for (Node<E> p = first; p != null; p = p.next) a[k++] = p.item; return a; } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Returns an array containing all of the elements in this deque, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the deque fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this deque. * * <p>If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * <tt>null</tt>. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose <tt>x</tt> is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of <tt>String</tt>: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that <tt>toArray(new Object[0])</tt> is identical in function to * <tt>toArray()</tt>. * {@description.close} * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ public <T> T[] toArray(T[] a) { lock.lock(); try { if (a.length < count) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count ); int k = 0; for (Node<E> p = first; p != null; p = p.next) a[k++] = (T)p.item; if (a.length > k) a[k] = null; return a; } finally { lock.unlock(); } } public String toString() { lock.lock(); try { return super.toString(); } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. * {@description.close} */ public void clear() { lock.lock(); try { first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Returns an iterator over the elements in this deque in proper sequence. * The elements will be returned in order from first (head) to last (tail). * {@description.close} * {@property.open synchronized} * The returned <tt>Iterator</tt> is a "weakly consistent" iterator that * will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * {@property.close} * * @return an iterator over the elements in this deque in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** {@collect.stats} * {@description.open} * Returns an iterator over the elements in this deque in reverse * sequential order. The elements will be returned in order from * last (tail) to first (head). * {@description.close} * {@property.open synchronized} * The returned <tt>Iterator</tt> is a "weakly consistent" iterator that * will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * {@property.close} */ public Iterator<E> descendingIterator() { return new DescendingItr(); } /** {@collect.stats} * {@description.open} * Base class for Iterators for LinkedBlockingDeque * {@description.close} */ private abstract class AbstractItr implements Iterator<E> { /** {@collect.stats} * {@description.open} * The next node to return in next * {@description.close} */ Node<E> next; /** {@collect.stats} * {@description.open} * nextItem holds on to item fields because once we claim that * an element exists in hasNext(), we must return item read * under lock (in advance()) even if it was in the process of * being removed when hasNext() was called. * {@description.close} */ E nextItem; /** {@collect.stats} * {@description.open} * Node returned by most recent call to next. Needed by remove. * Reset to null if this element is deleted by a call to remove. * {@description.close} */ private Node<E> lastRet; AbstractItr() { advance(); // set to initial position } /** {@collect.stats} * {@description.open} * Advances next, or if not yet initialized, sets to first node. * Implemented to move forward vs backward in the two subclasses. * {@description.close} */ abstract void advance(); public boolean hasNext() { return next != null; } public E next() { if (next == null) throw new NoSuchElementException(); lastRet = next; E x = nextItem; advance(); return x; } public void remove() { Node<E> n = lastRet; if (n == null) throw new IllegalStateException(); lastRet = null; // Note: removeNode rescans looking for this node to make // sure it was not already removed. Otherwise, trying to // re-remove could corrupt list. removeNode(n); } } /** {@collect.stats} * {@description.open} * Forward iterator * {@description.close} */ private class Itr extends AbstractItr { void advance() { final ReentrantLock lock = LinkedBlockingDeque.this.lock; lock.lock(); try { next = (next == null)? first : next.next; nextItem = (next == null)? null : next.item; } finally { lock.unlock(); } } } /** {@collect.stats} * {@description.open} * Descending iterator for LinkedBlockingDeque * {@description.close} */ private class DescendingItr extends AbstractItr { void advance() { final ReentrantLock lock = LinkedBlockingDeque.this.lock; lock.lock(); try { next = (next == null)? last : next.prev; nextItem = (next == null)? null : next.item; } finally { lock.unlock(); } } } /** {@collect.stats} * {@description.open} * Save the state of this deque to a stream (that is, serialize it). * {@description.close} * * @serialData The capacity (int), followed by elements (each an * <tt>Object</tt>) in the proper order, followed by a null * @param s the stream */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { lock.lock(); try { // Write out capacity and any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node<E> p = first; p != null; p = p.next) s.writeObject(p.item); // Use trailing null as sentinel s.writeObject(null); } finally { lock.unlock(); } } /** {@collect.stats} * {@description.open} * Reconstitute this deque from a stream (that is, * deserialize it). * {@description.close} * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); count = 0; first = null; last = null; // Read in all elements and place in queue for (;;) { E item = (E)s.readObject(); if (item == null) break; add(item); } } }