/* * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.security.spec; import java.math.BigInteger; import java.util.Arrays; /** {@collect.stats} * This immutable class defines an elliptic curve (EC) * characteristic 2 finite field. * * @see ECField * * @author Valerie Peng * * @since 1.5 */ public class ECFieldF2m implements ECField { private int m; private int[] ks; private BigInteger rp; /** {@collect.stats} * Creates an elliptic curve characteristic 2 finite * field which has 2^<code>m</code> elements with normal basis. * @param m with 2^<code>m</code> being the number of elements. * @exception IllegalArgumentException if <code>m</code> * is not positive. */ public ECFieldF2m(int m) { if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } this.m = m; this.ks = null; this.rp = null; } /** {@collect.stats} * Creates an elliptic curve characteristic 2 finite * field which has 2^<code>m</code> elements with * polynomial basis. * The reduction polynomial for this field is based * on <code>rp</code> whose i-th bit correspondes to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^<code>m</code> + X^<code>k</code> + 1 * with <code>m</code> > <code>k</code> >= 1) or a * pentanomial (X^<code>m</code> + X^<code>k3</code> * + X^<code>k2</code> + X^<code>k1</code> + 1 with * <code>m</code> > <code>k3</code> > <code>k2</code> * > <code>k1</code> >= 1). * @param m with 2^<code>m</code> being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if <code>rp</code> is null. * @exception IllegalArgumentException if <code>m</code> * is not positive, or <code>rp</code> does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } } /** {@collect.stats} * Creates an elliptic curve characteristic 2 finite * field which has 2^<code>m</code> elements with * polynomial basis. The reduction polynomial for this * field is based on <code>ks</code> whose content * contains the order of the middle term(s) of the * reduction polynomial. * Note: A valid reduction polynomial is either a * trinomial (X^<code>m</code> + X^<code>k</code> + 1 * with <code>m</code> > <code>k</code> >= 1) or a * pentanomial (X^<code>m</code> + X^<code>k3</code> * + X^<code>k2</code> + X^<code>k1</code> + 1 with * <code>m</code> > <code>k3</code> > <code>k2</code> * > <code>k1</code> >= 1), so <code>ks</code> should * have length 1 or 3. * @param m with 2^<code>m</code> being the number of elements. * @param ks the order of the middle term(s) of the * reduction polynomial. Contents of this array are copied * to protect against subsequent modification. * @exception NullPointerException if <code>ks</code> is null. * @exception IllegalArgumentException if<code>m</code> * is not positive, or the length of <code>ks</code> * is neither 1 nor 3, or values in <code>ks</code> * are not between <code>m</code>-1 and 1 (inclusive) * and in descending order. */ public ECFieldF2m(int m, int[] ks) { // check m and ks this.m = m; this.ks = ks.clone(); if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } if ((this.ks.length != 1) && (this.ks.length != 3)) { throw new IllegalArgumentException ("length of ks is neither 1 nor 3"); } for (int i = 0; i < this.ks.length; i++) { if ((this.ks[i] < 1) || (this.ks[i] > m-1)) { throw new IllegalArgumentException ("ks["+ i + "] is out of range"); } if ((i != 0) && (this.ks[i] >= this.ks[i-1])) { throw new IllegalArgumentException ("values in ks are not in descending order"); } } // convert ks into rp this.rp = BigInteger.ONE; this.rp = rp.setBit(m); for (int j = 0; j < this.ks.length; j++) { rp = rp.setBit(this.ks[j]); } } /** {@collect.stats} * Returns the field size in bits which is <code>m</code> * for this characteristic 2 finite field. * @return the field size in bits. */ public int getFieldSize() { return m; } /** {@collect.stats} * Returns the value <code>m</code> of this characteristic * 2 finite field. * @return <code>m</code> with 2^<code>m</code> being the * number of elements. */ public int getM() { return m; } /** {@collect.stats} * Returns a BigInteger whose i-th bit corresponds to the * i-th coefficient of the reduction polynomial for polynomial * basis or null for normal basis. * @return a BigInteger whose i-th bit corresponds to the * i-th coefficient of the reduction polynomial for polynomial * basis or null for normal basis. */ public BigInteger getReductionPolynomial() { return rp; } /** {@collect.stats} * Returns an integer array which contains the order of the * middle term(s) of the reduction polynomial for polynomial * basis or null for normal basis. * @return an integer array which contains the order of the * middle term(s) of the reduction polynomial for polynomial * basis or null for normal basis. A new array is returned * each time this method is called. */ public int[] getMidTermsOfReductionPolynomial() { if (ks == null) { return null; } else { return ks.clone(); } } /** {@collect.stats} * Compares this finite field for equality with the * specified object. * @param obj the object to be compared. * @return true if <code>obj</code> is an instance * of ECFieldF2m and both <code>m</code> and the reduction * polynomial match, false otherwise. */ public boolean equals(Object obj) { if (this == obj) return true; if (obj instanceof ECFieldF2m) { // no need to compare rp here since ks and rp // should be equivalent return ((m == ((ECFieldF2m)obj).m) && (Arrays.equals(ks, ((ECFieldF2m) obj).ks))); } return false; } /** {@collect.stats} * Returns a hash code value for this characteristic 2 * finite field. * @return a hash code value. */ public int hashCode() { int value = m << 5; value += (rp==null? 0:rp.hashCode()); // no need to involve ks here since ks and rp // should be equivalent. return value; } }