/* * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import java.lang.ref.*; import java.util.concurrent.atomic.AtomicInteger; /** {@collect.stats} * {@description.open} * This class provides thread-local variables. These variables differ from * their normal counterparts in that each thread that accesses one (via its * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized * copy of the variable. <tt>ThreadLocal</tt> instances are typically private * static fields in classes that wish to associate state with a thread (e.g., * a user ID or Transaction ID). * * <p>For example, the class below generates unique identifiers local to each * thread. * A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt> * and remains unchanged on subsequent calls. * <pre> * import java.util.concurrent.atomic.AtomicInteger; * * public class ThreadId { * // Atomic integer containing the next thread ID to be assigned * private static final AtomicInteger nextId = new AtomicInteger(0); * * // Thread local variable containing each thread's ID * private static final ThreadLocal<Integer> threadId = * new ThreadLocal<Integer>() { * @Override protected Integer initialValue() { * return nextId.getAndIncrement(); * } * }; * * // Returns the current thread's unique ID, assigning it if necessary * public static int get() { * return threadId.get(); * } * } * </pre> * <p>Each thread holds an implicit reference to its copy of a thread-local * variable as long as the thread is alive and the <tt>ThreadLocal</tt> * instance is accessible; after a thread goes away, all of its copies of * thread-local instances are subject to garbage collection (unless other * references to these copies exist). * {@description.close} * * @author Josh Bloch and Doug Lea * @since 1.2 */ public class ThreadLocal<T> { /** {@collect.stats} * {@description.open} * ThreadLocals rely on per-thread linear-probe hash maps attached * to each thread (Thread.threadLocals and * inheritableThreadLocals). The ThreadLocal objects act as keys, * searched via threadLocalHashCode. This is a custom hash code * (useful only within ThreadLocalMaps) that eliminates collisions * in the common case where consecutively constructed ThreadLocals * are used by the same threads, while remaining well-behaved in * less common cases. * {@description.close} */ private final int threadLocalHashCode = nextHashCode(); /** {@collect.stats} * {@description.open} * The next hash code to be given out. Updated atomically. Starts at * zero. * {@description.close} */ private static AtomicInteger nextHashCode = new AtomicInteger(); /** {@collect.stats} * {@description.open} * The difference between successively generated hash codes - turns * implicit sequential thread-local IDs into near-optimally spread * multiplicative hash values for power-of-two-sized tables. * {@description.close} */ private static final int HASH_INCREMENT = 0x61c88647; /** {@collect.stats} * Returns the next hash code. */ private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } /** {@collect.stats} * {@description.open} * Returns the current thread's "initial value" for this * thread-local variable. This method will be invoked the first * time a thread accesses the variable with the {@link #get} * method, unless the thread previously invoked the {@link #set} * method, in which case the <tt>initialValue</tt> method will not * be invoked for the thread. Normally, this method is invoked at * most once per thread, but it may be invoked again in case of * subsequent invocations of {@link #remove} followed by {@link #get}. * * <p>This implementation simply returns <tt>null</tt>; if the * programmer desires thread-local variables to have an initial * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be * subclassed, and this method overridden. Typically, an * anonymous inner class will be used. * {@description.close} * * @return the initial value for this thread-local */ protected T initialValue() { return null; } /** {@collect.stats} * {@description.open} * Creates a thread local variable. * {@description.close} */ public ThreadLocal() { } /** {@collect.stats} * {@description.open} * Returns the value in the current thread's copy of this * thread-local variable. If the variable has no value for the * current thread, it is first initialized to the value returned * by an invocation of the {@link #initialValue} method. * {@description.close} * * @return the current thread's value of this thread-local */ public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) return (T)e.value; } return setInitialValue(); } /** {@collect.stats} * {@description.open} * Variant of set() to establish initialValue. Used instead * of set() in case user has overridden the set() method. * {@description.close} * * @return the initial value */ private T setInitialValue() { T value = initialValue(); Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); return value; } /** {@collect.stats} * {@description.open} * Sets the current thread's copy of this thread-local variable * to the specified value. Most subclasses will have no need to * override this method, relying solely on the {@link #initialValue} * method to set the values of thread-locals. * {@description.close} * * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } /** {@collect.stats} * {@description.open} * Removes the current thread's value for this thread-local * variable. If this thread-local variable is subsequently * {@linkplain #get read} by the current thread, its value will be * reinitialized by invoking its {@link #initialValue} method, * unless its value is {@linkplain #set set} by the current thread * in the interim. This may result in multiple invocations of the * <tt>initialValue</tt> method in the current thread. * {@description.close} * * @since 1.5 */ public void remove() { ThreadLocalMap m = getMap(Thread.currentThread()); if (m != null) m.remove(this); } /** {@collect.stats} * {@description.open} * Get the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * {@description.close} * * @param t the current thread * @return the map */ ThreadLocalMap getMap(Thread t) { return t.threadLocals; } /** {@collect.stats} * {@description.open} * Create the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * {@description.close} * * @param t the current thread * @param firstValue value for the initial entry of the map * @param map the map to store. */ void createMap(Thread t, T firstValue) { t.threadLocals = new ThreadLocalMap(this, firstValue); } /** {@collect.stats} * {@description.open} * Factory method to create map of inherited thread locals. * Designed to be called only from Thread constructor. * {@description.close} * * @param parentMap the map associated with parent thread * @return a map containing the parent's inheritable bindings */ static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) { return new ThreadLocalMap(parentMap); } /** {@collect.stats} * {@description.open} * Method childValue is visibly defined in subclass * InheritableThreadLocal, but is internally defined here for the * sake of providing createInheritedMap factory method without * needing to subclass the map class in InheritableThreadLocal. * This technique is preferable to the alternative of embedding * instanceof tests in methods. * {@description.close} */ T childValue(T parentValue) { throw new UnsupportedOperationException(); } /** {@collect.stats} * {@description.open} * ThreadLocalMap is a customized hash map suitable only for * maintaining thread local values. No operations are exported * outside of the ThreadLocal class. The class is package private to * allow declaration of fields in class Thread. To help deal with * very large and long-lived usages, the hash table entries use * WeakReferences for keys. However, since reference queues are not * used, stale entries are guaranteed to be removed only when * the table starts running out of space. * {@description.close} */ static class ThreadLocalMap { /** {@collect.stats} * {@description.open} * The entries in this hash map extend WeakReference, using * its main ref field as the key (which is always a * ThreadLocal object). Note that null keys (i.e. entry.get() * == null) mean that the key is no longer referenced, so the * entry can be expunged from table. Such entries are referred to * as "stale entries" in the code that follows. * {@description.close} */ static class Entry extends WeakReference<ThreadLocal> { /** {@collect.stats} * {@description.open} * The value associated with this ThreadLocal. * {@description.close} */ Object value; Entry(ThreadLocal k, Object v) { super(k); value = v; } } /** {@collect.stats} * {@description.open} * The initial capacity -- MUST be a power of two. * {@description.close} */ private static final int INITIAL_CAPACITY = 16; /** {@collect.stats} * {@description.open} * The table, resized as necessary. * table.length MUST always be a power of two. * {@description.close} */ private Entry[] table; /** {@collect.stats} * {@description.open} * The number of entries in the table. * {@description.close} */ private int size = 0; /** {@collect.stats} * {@description.open} * The next size value at which to resize. * {@description.close} */ private int threshold; // Default to 0 /** {@collect.stats} * {@description.open} * Set the resize threshold to maintain at worst a 2/3 load factor. * {@description.close} */ private void setThreshold(int len) { threshold = len * 2 / 3; } /** {@collect.stats} * {@description.open} * Increment i modulo len. * {@description.close} */ private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); } /** {@collect.stats} * {@description.open} * Decrement i modulo len. * {@description.close} */ private static int prevIndex(int i, int len) { return ((i - 1 >= 0) ? i - 1 : len - 1); } /** {@collect.stats} * {@description.open} * Construct a new map initially containing (firstKey, firstValue). * ThreadLocalMaps are constructed lazily, so we only create * one when we have at least one entry to put in it. * {@description.close} */ ThreadLocalMap(ThreadLocal firstKey, Object firstValue) { table = new Entry[INITIAL_CAPACITY]; int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); table[i] = new Entry(firstKey, firstValue); size = 1; setThreshold(INITIAL_CAPACITY); } /** {@collect.stats} * {@description.open} * Construct a new map including all Inheritable ThreadLocals * from given parent map. Called only by createInheritedMap. * {@description.close} * * @param parentMap the map associated with parent thread. */ private ThreadLocalMap(ThreadLocalMap parentMap) { Entry[] parentTable = parentMap.table; int len = parentTable.length; setThreshold(len); table = new Entry[len]; for (int j = 0; j < len; j++) { Entry e = parentTable[j]; if (e != null) { ThreadLocal key = e.get(); if (key != null) { Object value = key.childValue(e.value); Entry c = new Entry(key, value); int h = key.threadLocalHashCode & (len - 1); while (table[h] != null) h = nextIndex(h, len); table[h] = c; size++; } } } } /** {@collect.stats} * {@description.open} * Get the entry associated with key. This method * itself handles only the fast path: a direct hit of existing * key. It otherwise relays to getEntryAfterMiss. This is * designed to maximize performance for direct hits, in part * by making this method readily inlinable. * {@description.close} * * @param key the thread local object * @return the entry associated with key, or null if no such */ private Entry getEntry(ThreadLocal key) { int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; if (e != null && e.get() == key) return e; else return getEntryAfterMiss(key, i, e); } /** {@collect.stats} * {@description.open} * Version of getEntry method for use when key is not found in * its direct hash slot. * {@description.close} * * @param key the thread local object * @param i the table index for key's hash code * @param e the entry at table[i] * @return the entry associated with key, or null if no such */ private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) { Entry[] tab = table; int len = tab.length; while (e != null) { ThreadLocal k = e.get(); if (k == key) return e; if (k == null) expungeStaleEntry(i); else i = nextIndex(i, len); e = tab[i]; } return null; } /** {@collect.stats} * {@description.open} * Set the value associated with key. * {@description.close} * * @param key the thread local object * @param value the value to be set */ private void set(ThreadLocal key, Object value) { // We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not. Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal k = e.get(); if (k == key) { e.value = value; return; } if (k == null) { replaceStaleEntry(key, value, i); return; } } tab[i] = new Entry(key, value); int sz = ++size; if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); } /** {@collect.stats} * {@description.open} * Remove the entry for key. * {@description.close} */ private void remove(ThreadLocal key) { Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { if (e.get() == key) { e.clear(); expungeStaleEntry(i); return; } } } /** {@collect.stats} * {@description.open} * Replace a stale entry encountered during a set operation * with an entry for the specified key. The value passed in * the value parameter is stored in the entry, whether or not * an entry already exists for the specified key. * * As a side effect, this method expunges all stale entries in the * "run" containing the stale entry. (A run is a sequence of entries * between two null slots.) * {@description.close} * * @param key the key * @param value the value to be associated with key * @param staleSlot index of the first stale entry encountered while * searching for key. */ private void replaceStaleEntry(ThreadLocal key, Object value, int staleSlot) { Entry[] tab = table; int len = tab.length; Entry e; // Back up to check for prior stale entry in current run. // We clean out whole runs at a time to avoid continual // incremental rehashing due to garbage collector freeing // up refs in bunches (i.e., whenever the collector runs). int slotToExpunge = staleSlot; for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len)) if (e.get() == null) slotToExpunge = i; // Find either the key or trailing null slot of run, whichever // occurs first for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal k = e.get(); // If we find key, then we need to swap it // with the stale entry to maintain hash table order. // The newly stale slot, or any other stale slot // encountered above it, can then be sent to expungeStaleEntry // to remove or rehash all of the other entries in run. if (k == key) { e.value = value; tab[i] = tab[staleSlot]; tab[staleSlot] = e; // Start expunge at preceding stale entry if it exists if (slotToExpunge == staleSlot) slotToExpunge = i; cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); return; } // If we didn't find stale entry on backward scan, the // first stale entry seen while scanning for key is the // first still present in the run. if (k == null && slotToExpunge == staleSlot) slotToExpunge = i; } // If key not found, put new entry in stale slot tab[staleSlot].value = null; tab[staleSlot] = new Entry(key, value); // If there are any other stale entries in run, expunge them if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); } /** {@collect.stats} * {@description.open} * Expunge a stale entry by rehashing any possibly colliding entries * lying between staleSlot and the next null slot. This also expunges * any other stale entries encountered before the trailing null. See * Knuth, Section 6.4 * {@description.close} * * @param staleSlot index of slot known to have null key * @return the index of the next null slot after staleSlot * (all between staleSlot and this slot will have been checked * for expunging). */ private int expungeStaleEntry(int staleSlot) { Entry[] tab = table; int len = tab.length; // expunge entry at staleSlot tab[staleSlot].value = null; tab[staleSlot] = null; size--; // Rehash until we encounter null Entry e; int i; for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal k = e.get(); if (k == null) { e.value = null; tab[i] = null; size--; } else { int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null; // Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; } /** {@collect.stats} * {@description.open} * Heuristically scan some cells looking for stale entries. * This is invoked when either a new element is added, or * another stale one has been expunged. It performs a * logarithmic number of scans, as a balance between no * scanning (fast but retains garbage) and a number of scans * proportional to number of elements, that would find all * garbage but would cause some insertions to take O(n) time. * {@description.close} * * @param i a position known NOT to hold a stale entry. The * scan starts at the element after i. * * @param n scan control: <tt>log2(n)</tt> cells are scanned, * unless a stale entry is found, in which case * <tt>log2(table.length)-1</tt> additional cells are scanned. * When called from insertions, this parameter is the number * of elements, but when from replaceStaleEntry, it is the * table length. (Note: all this could be changed to be either * more or less aggressive by weighting n instead of just * using straight log n. But this version is simple, fast, and * seems to work well.) * * @return true if any stale entries have been removed. */ private boolean cleanSomeSlots(int i, int n) { boolean removed = false; Entry[] tab = table; int len = tab.length; do { i = nextIndex(i, len); Entry e = tab[i]; if (e != null && e.get() == null) { n = len; removed = true; i = expungeStaleEntry(i); } } while ( (n >>>= 1) != 0); return removed; } /** {@collect.stats} * {@description.open} * Re-pack and/or re-size the table. First scan the entire * table removing stale entries. If this doesn't sufficiently * shrink the size of the table, double the table size. * {@description.close} */ private void rehash() { expungeStaleEntries(); // Use lower threshold for doubling to avoid hysteresis if (size >= threshold - threshold / 4) resize(); } /** {@collect.stats} * {@description.open} * Double the capacity of the table. * {@description.close} */ private void resize() { Entry[] oldTab = table; int oldLen = oldTab.length; int newLen = oldLen * 2; Entry[] newTab = new Entry[newLen]; int count = 0; for (int j = 0; j < oldLen; ++j) { Entry e = oldTab[j]; if (e != null) { ThreadLocal k = e.get(); if (k == null) { e.value = null; // Help the GC } else { int h = k.threadLocalHashCode & (newLen - 1); while (newTab[h] != null) h = nextIndex(h, newLen); newTab[h] = e; count++; } } } setThreshold(newLen); size = count; table = newTab; } /** {@collect.stats} * {@description.open} * Expunge all stale entries in the table. * {@description.close} */ private void expungeStaleEntries() { Entry[] tab = table; int len = tab.length; for (int j = 0; j < len; j++) { Entry e = tab[j]; if (e != null && e.get() == null) expungeStaleEntry(j); } } } }