/* * Copyright (c) 1994, 2006, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import java.util.Random; /** {@collect.stats} * {@description.open} * The class {@code Math} contains methods for performing basic * numeric operations such as the elementary exponential, logarithm, * square root, and trigonometric functions. * * <p>Unlike some of the numeric methods of class * {@code StrictMath}, all implementations of the equivalent * functions of class {@code Math} are not defined to return the * bit-for-bit same results. This relaxation permits * better-performing implementations where strict reproducibility is * not required. * * <p>By default many of the {@code Math} methods simply call * the equivalent method in {@code StrictMath} for their * implementation. * {@description.close} * {@property.open static performance} * Code generators are encouraged to use * platform-specific native libraries or microprocessor instructions, * where available, to provide higher-performance implementations of * {@code Math} methods. Such higher-performance * implementations still must conform to the specification for * {@code Math}. * {@property.close} * * {@description.open} * <p>The quality of implementation specifications concern two * properties, accuracy of the returned result and monotonicity of the * method. Accuracy of the floating-point {@code Math} methods * is measured in terms of <i>ulps</i>, units in the last place. For * a given floating-point format, an ulp of a specific real number * value is the distance between the two floating-point values * bracketing that numerical value. When discussing the accuracy of a * method as a whole rather than at a specific argument, the number of * ulps cited is for the worst-case error at any argument. If a * method always has an error less than 0.5 ulps, the method always * returns the floating-point number nearest the exact result; such a * method is <i>correctly rounded</i>. A correctly rounded method is * generally the best a floating-point approximation can be; however, * it is impractical for many floating-point methods to be correctly * rounded. Instead, for the {@code Math} class, a larger error * bound of 1 or 2 ulps is allowed for certain methods. Informally, * with a 1 ulp error bound, when the exact result is a representable * number, the exact result should be returned as the computed result; * otherwise, either of the two floating-point values which bracket * the exact result may be returned. For exact results large in * magnitude, one of the endpoints of the bracket may be infinite. * Besides accuracy at individual arguments, maintaining proper * relations between the method at different arguments is also * important. Therefore, most methods with more than 0.5 ulp errors * are required to be <i>semi-monotonic</i>: whenever the mathematical * function is non-decreasing, so is the floating-point approximation, * likewise, whenever the mathematical function is non-increasing, so * is the floating-point approximation. Not all approximations that * have 1 ulp accuracy will automatically meet the monotonicity * requirements. * {@description.close} * * @author unascribed * @author Joseph D. Darcy * @since JDK1.0 */ public final class Math { /** {@collect.stats} * {@description.open} * Don't let anyone instantiate this class. * {@description.close} */ private Math() {} /** {@collect.stats} * {@description.open} * The {@code double} value that is closer than any other to * <i>e</i>, the base of the natural logarithms. * {@description.close} */ public static final double E = 2.7182818284590452354; /** {@collect.stats} * {@description.open} * The {@code double} value that is closer than any other to * <i>pi</i>, the ratio of the circumference of a circle to its * diameter. * {@description.close} */ public static final double PI = 3.14159265358979323846; /** {@collect.stats} * {@description.open} * Returns the trigonometric sine of an angle. Special cases: * <ul><li>If the argument is NaN or an infinity, then the * result is NaN. * <li>If the argument is zero, then the result is a zero with the * same sign as the argument.</ul> *{@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a an angle, in radians. * @return the sine of the argument. */ public static double sin(double a) { return StrictMath.sin(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the trigonometric cosine of an angle. Special cases: * <ul><li>If the argument is NaN or an infinity, then the * result is NaN.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a an angle, in radians. * @return the cosine of the argument. */ public static double cos(double a) { return StrictMath.cos(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the trigonometric tangent of an angle. Special cases: * <ul><li>If the argument is NaN or an infinity, then the result * is NaN. * <li>If the argument is zero, then the result is a zero with the * same sign as the argument.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a an angle, in radians. * @return the tangent of the argument. */ public static double tan(double a) { return StrictMath.tan(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the arc sine of a value; the returned angle is in the * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: * <ul><li>If the argument is NaN or its absolute value is greater * than 1, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the * same sign as the argument.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a the value whose arc sine is to be returned. * @return the arc sine of the argument. */ public static double asin(double a) { return StrictMath.asin(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the arc cosine of a value; the returned angle is in the * range 0.0 through <i>pi</i>. Special case: * <ul><li>If the argument is NaN or its absolute value is greater * than 1, then the result is NaN.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a the value whose arc cosine is to be returned. * @return the arc cosine of the argument. */ public static double acos(double a) { return StrictMath.acos(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the arc tangent of a value; the returned angle is in the * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: * <ul><li>If the argument is NaN, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the * same sign as the argument.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a the value whose arc tangent is to be returned. * @return the arc tangent of the argument. */ public static double atan(double a) { return StrictMath.atan(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Converts an angle measured in degrees to an approximately * equivalent angle measured in radians. The conversion from * degrees to radians is generally inexact. * {@description.close} * * @param angdeg an angle, in degrees * @return the measurement of the angle {@code angdeg} * in radians. * @since 1.2 */ public static double toRadians(double angdeg) { return angdeg / 180.0 * PI; } /** {@collect.stats} * {@description.open} * Converts an angle measured in radians to an approximately * equivalent angle measured in degrees. * The conversion from * radians to degrees is generally inexact; users should * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly * equal {@code 0.0}. * {@description.close} * * @param angrad an angle, in radians * @return the measurement of the angle {@code angrad} * in degrees. * @since 1.2 */ public static double toDegrees(double angrad) { return angrad * 180.0 / PI; } /** {@collect.stats} * {@description.open} * Returns Euler's number <i>e</i> raised to the power of a * {@code double} value. Special cases: * <ul><li>If the argument is NaN, the result is NaN. * <li>If the argument is positive infinity, then the result is * positive infinity. * <li>If the argument is negative infinity, then the result is * positive zero.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a the exponent to raise <i>e</i> to. * @return the value <i>e</i><sup>{@code a}</sup>, * where <i>e</i> is the base of the natural logarithms. */ public static double exp(double a) { return StrictMath.exp(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the natural logarithm (base <i>e</i>) of a {@code double} * value. Special cases: * <ul><li>If the argument is NaN or less than zero, then the result * is NaN. * <li>If the argument is positive infinity, then the result is * positive infinity. * <li>If the argument is positive zero or negative zero, then the * result is negative infinity.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a a value * @return the value ln {@code a}, the natural logarithm of * {@code a}. */ public static double log(double a) { return StrictMath.log(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the base 10 logarithm of a {@code double} value. * Special cases: * * <ul><li>If the argument is NaN or less than zero, then the result * is NaN. * <li>If the argument is positive infinity, then the result is * positive infinity. * <li>If the argument is positive zero or negative zero, then the * result is negative infinity. * <li> If the argument is equal to 10<sup><i>n</i></sup> for * integer <i>n</i>, then the result is <i>n</i>. * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a a value * @return the base 10 logarithm of {@code a}. * @since 1.5 */ public static double log10(double a) { return StrictMath.log10(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the correctly rounded positive square root of a * {@code double} value. * Special cases: * <ul><li>If the argument is NaN or less than zero, then the result * is NaN. * <li>If the argument is positive infinity, then the result is positive * infinity. * <li>If the argument is positive zero or negative zero, then the * result is the same as the argument.</ul> * Otherwise, the result is the {@code double} value closest to * the true mathematical square root of the argument value. * {@description.close} * * @param a a value. * @return the positive square root of {@code a}. * If the argument is NaN or less than zero, the result is NaN. */ public static double sqrt(double a) { return StrictMath.sqrt(a); // default impl. delegates to StrictMath // Note that hardware sqrt instructions // frequently can be directly used by JITs // and should be much faster than doing // Math.sqrt in software. } /** {@collect.stats} * {@description.open} * Returns the cube root of a {@code double} value. For * positive finite {@code x}, {@code cbrt(-x) == * -cbrt(x)}; that is, the cube root of a negative value is * the negative of the cube root of that value's magnitude. * * Special cases: * * <ul> * * <li>If the argument is NaN, then the result is NaN. * * <li>If the argument is infinite, then the result is an infinity * with the same sign as the argument. * * <li>If the argument is zero, then the result is a zero with the * same sign as the argument. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * {@property.close} * * @param a a value. * @return the cube root of {@code a}. * @since 1.5 */ public static double cbrt(double a) { return StrictMath.cbrt(a); } /** {@collect.stats} * {@description.open} * Computes the remainder operation on two arguments as prescribed * by the IEEE 754 standard. * The remainder value is mathematically equal to * <code>f1 - f2</code> × <i>n</i>, * where <i>n</i> is the mathematical integer closest to the exact * mathematical value of the quotient {@code f1/f2}, and if two * mathematical integers are equally close to {@code f1/f2}, * then <i>n</i> is the integer that is even. If the remainder is * zero, its sign is the same as the sign of the first argument. * Special cases: * <ul><li>If either argument is NaN, or the first argument is infinite, * or the second argument is positive zero or negative zero, then the * result is NaN. * <li>If the first argument is finite and the second argument is * infinite, then the result is the same as the first argument.</ul> * {@description.close} * * @param f1 the dividend. * @param f2 the divisor. * @return the remainder when {@code f1} is divided by * {@code f2}. */ public static double IEEEremainder(double f1, double f2) { return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath } /** {@collect.stats} * {@description.open} * Returns the smallest (closest to negative infinity) * {@code double} value that is greater than or equal to the * argument and is equal to a mathematical integer. Special cases: * <ul><li>If the argument value is already equal to a * mathematical integer, then the result is the same as the * argument. <li>If the argument is NaN or an infinity or * positive zero or negative zero, then the result is the same as * the argument. <li>If the argument value is less than zero but * greater than -1.0, then the result is negative zero.</ul> Note * that the value of {@code Math.ceil(x)} is exactly the * value of {@code -Math.floor(-x)}. * {@description.close} * * @param a a value. * @return the smallest (closest to negative infinity) * floating-point value that is greater than or equal to * the argument and is equal to a mathematical integer. */ public static double ceil(double a) { return StrictMath.ceil(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the largest (closest to positive infinity) * {@code double} value that is less than or equal to the * argument and is equal to a mathematical integer. Special cases: * <ul><li>If the argument value is already equal to a * mathematical integer, then the result is the same as the * argument. <li>If the argument is NaN or an infinity or * positive zero or negative zero, then the result is the same as * the argument.</ul> * {@description.close} * * @param a a value. * @return the largest (closest to positive infinity) * floating-point value that less than or equal to the argument * and is equal to a mathematical integer. */ public static double floor(double a) { return StrictMath.floor(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the {@code double} value that is closest in value * to the argument and is equal to a mathematical integer. If two * {@code double} values that are mathematical integers are * equally close, the result is the integer value that is * even. Special cases: * <ul><li>If the argument value is already equal to a mathematical * integer, then the result is the same as the argument. * <li>If the argument is NaN or an infinity or positive zero or negative * zero, then the result is the same as the argument.</ul> * {@description.close} * * @param a a {@code double} value. * @return the closest floating-point value to {@code a} that is * equal to a mathematical integer. */ public static double rint(double a) { return StrictMath.rint(a); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the angle <i>theta</i> from the conversion of rectangular * coordinates ({@code x}, {@code y}) to polar * coordinates (r, <i>theta</i>). * This method computes the phase <i>theta</i> by computing an arc tangent * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special * cases: * <ul><li>If either argument is NaN, then the result is NaN. * <li>If the first argument is positive zero and the second argument * is positive, or the first argument is positive and finite and the * second argument is positive infinity, then the result is positive * zero. * <li>If the first argument is negative zero and the second argument * is positive, or the first argument is negative and finite and the * second argument is positive infinity, then the result is negative zero. * <li>If the first argument is positive zero and the second argument * is negative, or the first argument is positive and finite and the * second argument is negative infinity, then the result is the * {@code double} value closest to <i>pi</i>. * <li>If the first argument is negative zero and the second argument * is negative, or the first argument is negative and finite and the * second argument is negative infinity, then the result is the * {@code double} value closest to -<i>pi</i>. * <li>If the first argument is positive and the second argument is * positive zero or negative zero, or the first argument is positive * infinity and the second argument is finite, then the result is the * {@code double} value closest to <i>pi</i>/2. * <li>If the first argument is negative and the second argument is * positive zero or negative zero, or the first argument is negative * infinity and the second argument is finite, then the result is the * {@code double} value closest to -<i>pi</i>/2. * <li>If both arguments are positive infinity, then the result is the * {@code double} value closest to <i>pi</i>/4. * <li>If the first argument is positive infinity and the second argument * is negative infinity, then the result is the {@code double} * value closest to 3*<i>pi</i>/4. * <li>If the first argument is negative infinity and the second argument * is positive infinity, then the result is the {@code double} value * closest to -<i>pi</i>/4. * <li>If both arguments are negative infinity, then the result is the * {@code double} value closest to -3*<i>pi</i>/4.</ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 2 ulps of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param y the ordinate coordinate * @param x the abscissa coordinate * @return the <i>theta</i> component of the point * (<i>r</i>, <i>theta</i>) * in polar coordinates that corresponds to the point * (<i>x</i>, <i>y</i>) in Cartesian coordinates. */ public static double atan2(double y, double x) { return StrictMath.atan2(y, x); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the value of the first argument raised to the power of the * second argument. Special cases: * * <ul><li>If the second argument is positive or negative zero, then the * result is 1.0. * <li>If the second argument is 1.0, then the result is the same as the * first argument. * <li>If the second argument is NaN, then the result is NaN. * <li>If the first argument is NaN and the second argument is nonzero, * then the result is NaN. * * <li>If * <ul> * <li>the absolute value of the first argument is greater than 1 * and the second argument is positive infinity, or * <li>the absolute value of the first argument is less than 1 and * the second argument is negative infinity, * </ul> * then the result is positive infinity. * * <li>If * <ul> * <li>the absolute value of the first argument is greater than 1 and * the second argument is negative infinity, or * <li>the absolute value of the * first argument is less than 1 and the second argument is positive * infinity, * </ul> * then the result is positive zero. * * <li>If the absolute value of the first argument equals 1 and the * second argument is infinite, then the result is NaN. * * <li>If * <ul> * <li>the first argument is positive zero and the second argument * is greater than zero, or * <li>the first argument is positive infinity and the second * argument is less than zero, * </ul> * then the result is positive zero. * * <li>If * <ul> * <li>the first argument is positive zero and the second argument * is less than zero, or * <li>the first argument is positive infinity and the second * argument is greater than zero, * </ul> * then the result is positive infinity. * * <li>If * <ul> * <li>the first argument is negative zero and the second argument * is greater than zero but not a finite odd integer, or * <li>the first argument is negative infinity and the second * argument is less than zero but not a finite odd integer, * </ul> * then the result is positive zero. * * <li>If * <ul> * <li>the first argument is negative zero and the second argument * is a positive finite odd integer, or * <li>the first argument is negative infinity and the second * argument is a negative finite odd integer, * </ul> * then the result is negative zero. * * <li>If * <ul> * <li>the first argument is negative zero and the second argument * is less than zero but not a finite odd integer, or * <li>the first argument is negative infinity and the second * argument is greater than zero but not a finite odd integer, * </ul> * then the result is positive infinity. * * <li>If * <ul> * <li>the first argument is negative zero and the second argument * is a negative finite odd integer, or * <li>the first argument is negative infinity and the second * argument is a positive finite odd integer, * </ul> * then the result is negative infinity. * * <li>If the first argument is finite and less than zero * <ul> * <li> if the second argument is a finite even integer, the * result is equal to the result of raising the absolute value of * the first argument to the power of the second argument * * <li>if the second argument is a finite odd integer, the result * is equal to the negative of the result of raising the absolute * value of the first argument to the power of the second * argument * * <li>if the second argument is finite and not an integer, then * the result is NaN. * </ul> * * <li>If both arguments are integers, then the result is exactly equal * to the mathematical result of raising the first argument to the power * of the second argument if that result can in fact be represented * exactly as a {@code double} value.</ul> * * <p>(In the foregoing descriptions, a floating-point value is * considered to be an integer if and only if it is finite and a * fixed point of the method {@link #ceil ceil} or, * equivalently, a fixed point of the method {@link #floor * floor}. A value is a fixed point of a one-argument * method if and only if the result of applying the method to the * value is equal to the value.) * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param a the base. * @param b the exponent. * @return the value {@code a}<sup>{@code b}</sup>. */ public static double pow(double a, double b) { return StrictMath.pow(a, b); // default impl. delegates to StrictMath } /** {@collect.stats} * {@description.open} * Returns the closest {@code int} to the argument. The * result is rounded to an integer by adding 1/2, taking the * floor of the result, and casting the result to type {@code int}. * In other words, the result is equal to the value of the expression: * <p>{@code (int)Math.floor(a + 0.5f)} * <p> * Special cases: * <ul><li>If the argument is NaN, the result is 0. * <li>If the argument is negative infinity or any value less than or * equal to the value of {@code Integer.MIN_VALUE}, the result is * equal to the value of {@code Integer.MIN_VALUE}. * <li>If the argument is positive infinity or any value greater than or * equal to the value of {@code Integer.MAX_VALUE}, the result is * equal to the value of {@code Integer.MAX_VALUE}.</ul> * {@description.close} * * @param a a floating-point value to be rounded to an integer. * @return the value of the argument rounded to the nearest * {@code int} value. * @see java.lang.Integer#MAX_VALUE * @see java.lang.Integer#MIN_VALUE */ public static int round(float a) { return (int)floor(a + 0.5f); } /** {@collect.stats} * {@description.open} * Returns the closest {@code long} to the argument. The result * is rounded to an integer by adding 1/2, taking the floor of the * result, and casting the result to type {@code long}. In other * words, the result is equal to the value of the expression: * <p>{@code (long)Math.floor(a + 0.5d)} * <p> * Special cases: * <ul><li>If the argument is NaN, the result is 0. * <li>If the argument is negative infinity or any value less than or * equal to the value of {@code Long.MIN_VALUE}, the result is * equal to the value of {@code Long.MIN_VALUE}. * <li>If the argument is positive infinity or any value greater than or * equal to the value of {@code Long.MAX_VALUE}, the result is * equal to the value of {@code Long.MAX_VALUE}.</ul> * {@description.close} * * @param a a floating-point value to be rounded to a * {@code long}. * @return the value of the argument rounded to the nearest * {@code long} value. * @see java.lang.Long#MAX_VALUE * @see java.lang.Long#MIN_VALUE */ public static long round(double a) { return (long)floor(a + 0.5d); } private static Random randomNumberGenerator; private static synchronized void initRNG() { if (randomNumberGenerator == null) randomNumberGenerator = new Random(); } /** {@collect.stats} * {@description.open} * Returns a {@code double} value with a positive sign, greater * than or equal to {@code 0.0} and less than {@code 1.0}. * Returned values are chosen pseudorandomly with (approximately) * uniform distribution from that range. * * <p>When this method is first called, it creates a single new * pseudorandom-number generator, exactly as if by the expression * <blockquote>{@code new java.util.Random}</blockquote> This * new pseudorandom-number generator is used thereafter for all * calls to this method and is used nowhere else. * {@description.close} * * {@property.open runtime performance formal:java.lang.Math_ContendedRandom} * <p>This method is properly synchronized to allow correct use by * more than one thread. However, if many threads need to generate * pseudorandom numbers at a great rate, it may reduce contention * for each thread to have its own pseudorandom-number generator. * {@property.close} * * @return a pseudorandom {@code double} greater than or equal * to {@code 0.0} and less than {@code 1.0}. * @see java.util.Random#nextDouble() */ public static double random() { if (randomNumberGenerator == null) initRNG(); return randomNumberGenerator.nextDouble(); } /** {@collect.stats} * {@description.open} * Returns the absolute value of an {@code int} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * * <p>Note that if the argument is equal to the value of * {@link Integer#MIN_VALUE}, the most negative representable * {@code int} value, the result is that same value, which is * negative. * {@description.close} * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. */ public static int abs(int a) { return (a < 0) ? -a : a; } /** {@collect.stats} * {@description.open} * Returns the absolute value of a {@code long} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * * <p>Note that if the argument is equal to the value of * {@link Long#MIN_VALUE}, the most negative representable * {@code long} value, the result is that same value, which * is negative. * {@description.close} * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. */ public static long abs(long a) { return (a < 0) ? -a : a; } /** {@collect.stats} * {@description.open} * Returns the absolute value of a {@code float} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * Special cases: * <ul><li>If the argument is positive zero or negative zero, the * result is positive zero. * <li>If the argument is infinite, the result is positive infinity. * <li>If the argument is NaN, the result is NaN.</ul> * In other words, the result is the same as the value of the expression: * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} * {@description.close} * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. */ public static float abs(float a) { return (a <= 0.0F) ? 0.0F - a : a; } /** {@collect.stats} * {@description.open} * Returns the absolute value of a {@code double} value. * If the argument is not negative, the argument is returned. * If the argument is negative, the negation of the argument is returned. * Special cases: * <ul><li>If the argument is positive zero or negative zero, the result * is positive zero. * <li>If the argument is infinite, the result is positive infinity. * <li>If the argument is NaN, the result is NaN.</ul> * In other words, the result is the same as the value of the expression: * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} * {@description.close} * * @param a the argument whose absolute value is to be determined * @return the absolute value of the argument. */ public static double abs(double a) { return (a <= 0.0D) ? 0.0D - a : a; } /** {@collect.stats} * {@description.open} * Returns the greater of two {@code int} values. That is, the * result is the argument closer to the value of * {@link Integer#MAX_VALUE}. If the arguments have the same value, * the result is that same value. * {@description.close} * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ public static int max(int a, int b) { return (a >= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the greater of two {@code long} values. That is, the * result is the argument closer to the value of * {@link Long#MAX_VALUE}. If the arguments have the same value, * the result is that same value. * {@description.close} * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ public static long max(long a, long b) { return (a >= b) ? a : b; } private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f); private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d); /** {@collect.stats} * {@description.open} * Returns the greater of two {@code float} values. That is, * the result is the argument closer to positive infinity. If the * arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If one * argument is positive zero and the other negative zero, the * result is positive zero. * {@description.close} * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ public static float max(float a, float b) { if (a != a) return a; // a is NaN if ((a == 0.0f) && (b == 0.0f) && (Float.floatToIntBits(a) == negativeZeroFloatBits)) { return b; } return (a >= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the greater of two {@code double} values. That * is, the result is the argument closer to positive infinity. If * the arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If one * argument is positive zero and the other negative zero, the * result is positive zero. * {@description.close} * * @param a an argument. * @param b another argument. * @return the larger of {@code a} and {@code b}. */ public static double max(double a, double b) { if (a != a) return a; // a is NaN if ((a == 0.0d) && (b == 0.0d) && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) { return b; } return (a >= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the smaller of two {@code int} values. That is, * the result the argument closer to the value of * {@link Integer#MIN_VALUE}. If the arguments have the same * value, the result is that same value. * {@description.close} * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ public static int min(int a, int b) { return (a <= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the smaller of two {@code long} values. That is, * the result is the argument closer to the value of * {@link Long#MIN_VALUE}. If the arguments have the same * value, the result is that same value. * {@description.close} * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ public static long min(long a, long b) { return (a <= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the smaller of two {@code float} values. That is, * the result is the value closer to negative infinity. If the * arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If * one argument is positive zero and the other is negative zero, * the result is negative zero. * {@description.close} * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ public static float min(float a, float b) { if (a != a) return a; // a is NaN if ((a == 0.0f) && (b == 0.0f) && (Float.floatToIntBits(b) == negativeZeroFloatBits)) { return b; } return (a <= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the smaller of two {@code double} values. That * is, the result is the value closer to negative infinity. If the * arguments have the same value, the result is that same * value. If either value is NaN, then the result is NaN. Unlike * the numerical comparison operators, this method considers * negative zero to be strictly smaller than positive zero. If one * argument is positive zero and the other is negative zero, the * result is negative zero. * {@description.close} * * @param a an argument. * @param b another argument. * @return the smaller of {@code a} and {@code b}. */ public static double min(double a, double b) { if (a != a) return a; // a is NaN if ((a == 0.0d) && (b == 0.0d) && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) { return b; } return (a <= b) ? a : b; } /** {@collect.stats} * {@description.open} * Returns the size of an ulp of the argument. An ulp of a * {@code double} value is the positive distance between this * floating-point value and the {@code double} value next * larger in magnitude. Note that for non-NaN <i>x</i>, * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. * * <p>Special Cases: * <ul> * <li> If the argument is NaN, then the result is NaN. * <li> If the argument is positive or negative infinity, then the * result is positive infinity. * <li> If the argument is positive or negative zero, then the result is * {@code Double.MIN_VALUE}. * <li> If the argument is ±{@code Double.MAX_VALUE}, then * the result is equal to 2<sup>971</sup>. * </ul> * {@description.close} * * @param d the floating-point value whose ulp is to be returned * @return the size of an ulp of the argument * @author Joseph D. Darcy * @since 1.5 */ public static double ulp(double d) { return sun.misc.FpUtils.ulp(d); } /** {@collect.stats} * {@description.open} * Returns the size of an ulp of the argument. An ulp of a * {@code float} value is the positive distance between this * floating-point value and the {@code float} value next * larger in magnitude. Note that for non-NaN <i>x</i>, * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. * * <p>Special Cases: * <ul> * <li> If the argument is NaN, then the result is NaN. * <li> If the argument is positive or negative infinity, then the * result is positive infinity. * <li> If the argument is positive or negative zero, then the result is * {@code Float.MIN_VALUE}. * <li> If the argument is ±{@code Float.MAX_VALUE}, then * the result is equal to 2<sup>104</sup>. * </ul> * {@description.close} * * @param f the floating-point value whose ulp is to be returned * @return the size of an ulp of the argument * @author Joseph D. Darcy * @since 1.5 */ public static float ulp(float f) { return sun.misc.FpUtils.ulp(f); } /** {@collect.stats} * {@description.open} * Returns the signum function of the argument; zero if the argument * is zero, 1.0 if the argument is greater than zero, -1.0 if the * argument is less than zero. * * <p>Special Cases: * <ul> * <li> If the argument is NaN, then the result is NaN. * <li> If the argument is positive zero or negative zero, then the * result is the same as the argument. * </ul> * {@description.close} * * @param d the floating-point value whose signum is to be returned * @return the signum function of the argument * @author Joseph D. Darcy * @since 1.5 */ public static double signum(double d) { return sun.misc.FpUtils.signum(d); } /** {@collect.stats} * {@description.open} * Returns the signum function of the argument; zero if the argument * is zero, 1.0f if the argument is greater than zero, -1.0f if the * argument is less than zero. * * <p>Special Cases: * <ul> * <li> If the argument is NaN, then the result is NaN. * <li> If the argument is positive zero or negative zero, then the * result is the same as the argument. * </ul> * {@description.close} * * @param f the floating-point value whose signum is to be returned * @return the signum function of the argument * @author Joseph D. Darcy * @since 1.5 */ public static float signum(float f) { return sun.misc.FpUtils.signum(f); } /** {@collect.stats} * {@description.open} * Returns the hyperbolic sine of a {@code double} value. * The hyperbolic sine of <i>x</i> is defined to be * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2 * where <i>e</i> is {@linkplain Math#E Euler's number}. * * <p>Special cases: * <ul> * * <li>If the argument is NaN, then the result is NaN. * * <li>If the argument is infinite, then the result is an infinity * with the same sign as the argument. * * <li>If the argument is zero, then the result is a zero with the * same sign as the argument. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 2.5 ulps of the exact result. * {@property.close} * * @param x The number whose hyperbolic sine is to be returned. * @return The hyperbolic sine of {@code x}. * @since 1.5 */ public static double sinh(double x) { return StrictMath.sinh(x); } /** {@collect.stats} * {@description.open} * Returns the hyperbolic cosine of a {@code double} value. * The hyperbolic cosine of <i>x</i> is defined to be * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2 * where <i>e</i> is {@linkplain Math#E Euler's number}. * * <p>Special cases: * <ul> * * <li>If the argument is NaN, then the result is NaN. * * <li>If the argument is infinite, then the result is positive * infinity. * * <li>If the argument is zero, then the result is {@code 1.0}. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 2.5 ulps of the exact result. * {@property.close} * * @param x The number whose hyperbolic cosine is to be returned. * @return The hyperbolic cosine of {@code x}. * @since 1.5 */ public static double cosh(double x) { return StrictMath.cosh(x); } /** {@collect.stats} * {@description.open} * Returns the hyperbolic tangent of a {@code double} value. * The hyperbolic tangent of <i>x</i> is defined to be * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>), * in other words, {@linkplain Math#sinh * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note * that the absolute value of the exact tanh is always less than * 1. * * <p>Special cases: * <ul> * * <li>If the argument is NaN, then the result is NaN. * * <li>If the argument is zero, then the result is a zero with the * same sign as the argument. * * <li>If the argument is positive infinity, then the result is * {@code +1.0}. * * <li>If the argument is negative infinity, then the result is * {@code -1.0}. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 2.5 ulps of the exact result. * The result of {@code tanh} for any finite input must have * an absolute value less than or equal to 1. Note that once the * exact result of tanh is within 1/2 of an ulp of the limit value * of ±1, correctly signed ±{@code 1.0} should * be returned. * {@property.close} * * @param x The number whose hyperbolic tangent is to be returned. * @return The hyperbolic tangent of {@code x}. * @since 1.5 */ public static double tanh(double x) { return StrictMath.tanh(x); } /** {@collect.stats} * {@description.open} * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) * without intermediate overflow or underflow. * * <p>Special cases: * <ul> * * <li> If either argument is infinite, then the result * is positive infinity. * * <li> If either argument is NaN and neither argument is infinite, * then the result is NaN. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact * result. If one parameter is held constant, the results must be * semi-monotonic in the other parameter. * {@property.close} * * @param x a value * @param y a value * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) * without intermediate overflow or underflow * @since 1.5 */ public static double hypot(double x, double y) { return StrictMath.hypot(x, y); } /** {@collect.stats} * {@description.open} * Returns <i>e</i><sup>x</sup> -1. Note that for values of * <i>x</i> near 0, the exact sum of * {@code expm1(x)} + 1 is much closer to the true * result of <i>e</i><sup>x</sup> than {@code exp(x)}. * * <p>Special cases: * <ul> * <li>If the argument is NaN, the result is NaN. * * <li>If the argument is positive infinity, then the result is * positive infinity. * * <li>If the argument is negative infinity, then the result is * -1.0. * * <li>If the argument is zero, then the result is a zero with the * same sign as the argument. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. The result of * {@code expm1} for any finite input must be greater than or * equal to {@code -1.0}. Note that once the exact result of * <i>e</i><sup>{@code x}</sup> - 1 is within 1/2 * ulp of the limit value -1, {@code -1.0} should be * returned. * {@property.close} * * @param x the exponent to raise <i>e</i> to in the computation of * <i>e</i><sup>{@code x}</sup> -1. * @return the value <i>e</i><sup>{@code x}</sup> - 1. * @since 1.5 */ public static double expm1(double x) { return StrictMath.expm1(x); } /** {@collect.stats} * {@description.open} * Returns the natural logarithm of the sum of the argument and 1. * Note that for small values {@code x}, the result of * {@code log1p(x)} is much closer to the true result of ln(1 * + {@code x}) than the floating-point evaluation of * {@code log(1.0+x)}. * * <p>Special cases: * * <ul> * * <li>If the argument is NaN or less than -1, then the result is * NaN. * * <li>If the argument is positive infinity, then the result is * positive infinity. * * <li>If the argument is negative one, then the result is * negative infinity. * * <li>If the argument is zero, then the result is a zero with the * same sign as the argument. * * </ul> * {@description.close} * * {@property.open accuracy} * <p>The computed result must be within 1 ulp of the exact result. * Results must be semi-monotonic. * {@property.close} * * @param x a value * @return the value ln({@code x} + 1), the natural * log of {@code x} + 1 * @since 1.5 */ public static double log1p(double x) { return StrictMath.log1p(x); } /** {@collect.stats} * {@description.open} * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * StrictMath#copySign(double, double) StrictMath.copySign} * method, this method does not require NaN {@code sign} * arguments to be treated as positive values; implementations are * permitted to treat some NaN arguments as positive and other NaN * arguments as negative to allow greater performance. * {@description.close} * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result * @return a value with the magnitude of {@code magnitude} * and the sign of {@code sign}. * @since 1.6 */ public static double copySign(double magnitude, double sign) { return sun.misc.FpUtils.rawCopySign(magnitude, sign); } /** {@collect.stats} * {@description.open} * Returns the first floating-point argument with the sign of the * second floating-point argument. Note that unlike the {@link * StrictMath#copySign(float, float) StrictMath.copySign} * method, this method does not require NaN {@code sign} * arguments to be treated as positive values; implementations are * permitted to treat some NaN arguments as positive and other NaN * arguments as negative to allow greater performance. * {@description.close} * * @param magnitude the parameter providing the magnitude of the result * @param sign the parameter providing the sign of the result * @return a value with the magnitude of {@code magnitude} * and the sign of {@code sign}. * @since 1.6 */ public static float copySign(float magnitude, float sign) { return sun.misc.FpUtils.rawCopySign(magnitude, sign); } /** {@collect.stats} * {@description.open} * Returns the unbiased exponent used in the representation of a * {@code float}. Special cases: * * <ul> * <li>If the argument is NaN or infinite, then the result is * {@link Float#MAX_EXPONENT} + 1. * <li>If the argument is zero or subnormal, then the result is * {@link Float#MIN_EXPONENT} -1. * </ul> * {@description.close} * @param f a {@code float} value * @return the unbiased exponent of the argument * @since 1.6 */ public static int getExponent(float f) { return sun.misc.FpUtils.getExponent(f); } /** {@collect.stats} * {@description.open} * Returns the unbiased exponent used in the representation of a * {@code double}. Special cases: * * <ul> * <li>If the argument is NaN or infinite, then the result is * {@link Double#MAX_EXPONENT} + 1. * <li>If the argument is zero or subnormal, then the result is * {@link Double#MIN_EXPONENT} -1. * </ul> * {@description.close} * @param d a {@code double} value * @return the unbiased exponent of the argument * @since 1.6 */ public static int getExponent(double d) { return sun.misc.FpUtils.getExponent(d); } /** {@collect.stats} * {@description.open} * Returns the floating-point number adjacent to the first * argument in the direction of the second argument. If both * arguments compare as equal the second argument is returned. * * <p> * Special cases: * <ul> * <li> If either argument is a NaN, then NaN is returned. * * <li> If both arguments are signed zeros, {@code direction} * is returned unchanged (as implied by the requirement of * returning the second argument if the arguments compare as * equal). * * <li> If {@code start} is * ±{@link Double#MIN_VALUE} and {@code direction} * has a value such that the result should have a smaller * magnitude, then a zero with the same sign as {@code start} * is returned. * * <li> If {@code start} is infinite and * {@code direction} has a value such that the result should * have a smaller magnitude, {@link Double#MAX_VALUE} with the * same sign as {@code start} is returned. * * <li> If {@code start} is equal to ± * {@link Double#MAX_VALUE} and {@code direction} has a * value such that the result should have a larger magnitude, an * infinity with same sign as {@code start} is returned. * </ul> * {@description.close} * * @param start starting floating-point value * @param direction value indicating which of * {@code start}'s neighbors or {@code start} should * be returned * @return The floating-point number adjacent to {@code start} in the * direction of {@code direction}. * @since 1.6 */ public static double nextAfter(double start, double direction) { return sun.misc.FpUtils.nextAfter(start, direction); } /** {@collect.stats} * {@description.open} * Returns the floating-point number adjacent to the first * argument in the direction of the second argument. If both * arguments compare as equal a value equivalent to the second argument * is returned. * * <p> * Special cases: * <ul> * <li> If either argument is a NaN, then NaN is returned. * * <li> If both arguments are signed zeros, a value equivalent * to {@code direction} is returned. * * <li> If {@code start} is * ±{@link Float#MIN_VALUE} and {@code direction} * has a value such that the result should have a smaller * magnitude, then a zero with the same sign as {@code start} * is returned. * * <li> If {@code start} is infinite and * {@code direction} has a value such that the result should * have a smaller magnitude, {@link Float#MAX_VALUE} with the * same sign as {@code start} is returned. * * <li> If {@code start} is equal to ± * {@link Float#MAX_VALUE} and {@code direction} has a * value such that the result should have a larger magnitude, an * infinity with same sign as {@code start} is returned. * </ul> * {@description.close} * * @param start starting floating-point value * @param direction value indicating which of * {@code start}'s neighbors or {@code start} should * be returned * @return The floating-point number adjacent to {@code start} in the * direction of {@code direction}. * @since 1.6 */ public static float nextAfter(float start, double direction) { return sun.misc.FpUtils.nextAfter(start, direction); } /** {@collect.stats} * {@description.open} * Returns the floating-point value adjacent to {@code d} in * the direction of positive infinity. This method is * semantically equivalent to {@code nextAfter(d, * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} * implementation may run faster than its equivalent * {@code nextAfter} call. * * <p>Special Cases: * <ul> * <li> If the argument is NaN, the result is NaN. * * <li> If the argument is positive infinity, the result is * positive infinity. * * <li> If the argument is zero, the result is * {@link Double#MIN_VALUE} * * </ul> * {@description.close} * * @param d starting floating-point value * @return The adjacent floating-point value closer to positive * infinity. * @since 1.6 */ public static double nextUp(double d) { return sun.misc.FpUtils.nextUp(d); } /** {@collect.stats} * {@description.open} * Returns the floating-point value adjacent to {@code f} in * the direction of positive infinity. This method is * semantically equivalent to {@code nextAfter(f, * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} * implementation may run faster than its equivalent * {@code nextAfter} call. * * <p>Special Cases: * <ul> * <li> If the argument is NaN, the result is NaN. * * <li> If the argument is positive infinity, the result is * positive infinity. * * <li> If the argument is zero, the result is * {@link Float#MIN_VALUE} * * </ul> * {@description.close} * * @param f starting floating-point value * @return The adjacent floating-point value closer to positive * infinity. * @since 1.6 */ public static float nextUp(float f) { return sun.misc.FpUtils.nextUp(f); } /** {@collect.stats} * {@description.open} * Return {@code d} × * 2<sup>{@code scaleFactor}</sup> rounded as if performed * by a single correctly rounded floating-point multiply to a * member of the double value set. See the Java * Language Specification for a discussion of floating-point * value sets. If the exponent of the result is between {@link * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the * answer is calculated exactly. If the exponent of the result * would be larger than {@code Double.MAX_EXPONENT}, an * infinity is returned. Note that if the result is subnormal, * precision may be lost; that is, when {@code scalb(x, n)} * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal * <i>x</i>. When the result is non-NaN, the result has the same * sign as {@code d}. * * <p>Special cases: * <ul> * <li> If the first argument is NaN, NaN is returned. * <li> If the first argument is infinite, then an infinity of the * same sign is returned. * <li> If the first argument is zero, then a zero of the same * sign is returned. * </ul> * {@description.close} * * @param d number to be scaled by a power of two. * @param scaleFactor power of 2 used to scale {@code d} * @return {@code d} × 2<sup>{@code scaleFactor}</sup> * @since 1.6 */ public static double scalb(double d, int scaleFactor) { return sun.misc.FpUtils.scalb(d, scaleFactor); } /** {@collect.stats} * {@description.open} * Return {@code f} × * 2<sup>{@code scaleFactor}</sup> rounded as if performed * by a single correctly rounded floating-point multiply to a * member of the float value set. See the Java * Language Specification for a discussion of floating-point * value sets. If the exponent of the result is between {@link * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the * answer is calculated exactly. If the exponent of the result * would be larger than {@code Float.MAX_EXPONENT}, an * infinity is returned. Note that if the result is subnormal, * precision may be lost; that is, when {@code scalb(x, n)} * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal * <i>x</i>. When the result is non-NaN, the result has the same * sign as {@code f}. * * <p>Special cases: * <ul> * <li> If the first argument is NaN, NaN is returned. * <li> If the first argument is infinite, then an infinity of the * same sign is returned. * <li> If the first argument is zero, then a zero of the same * sign is returned. * </ul> * {@description.close} * * @param f number to be scaled by a power of two. * @param scaleFactor power of 2 used to scale {@code f} * @return {@code f} × 2<sup>{@code scaleFactor}</sup> * @since 1.6 */ public static float scalb(float f, int scaleFactor) { return sun.misc.FpUtils.scalb(f, scaleFactor); } }