/* * Copyright (c) 1997, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.awt.geom; import java.util.*; /** {@collect.stats} * A utility class to iterate over the path segments of an rounded rectangle * through the PathIterator interface. * * @author Jim Graham */ class RoundRectIterator implements PathIterator { double x, y, w, h, aw, ah; AffineTransform affine; int index; RoundRectIterator(RoundRectangle2D rr, AffineTransform at) { this.x = rr.getX(); this.y = rr.getY(); this.w = rr.getWidth(); this.h = rr.getHeight(); this.aw = Math.min(w, Math.abs(rr.getArcWidth())); this.ah = Math.min(h, Math.abs(rr.getArcHeight())); this.affine = at; if (aw < 0 || ah < 0) { // Don't draw anything... index = ctrlpts.length; } } /** {@collect.stats} * Return the winding rule for determining the insideness of the * path. * @see #WIND_EVEN_ODD * @see #WIND_NON_ZERO */ public int getWindingRule() { return WIND_NON_ZERO; } /** {@collect.stats} * Tests if there are more points to read. * @return true if there are more points to read */ public boolean isDone() { return index >= ctrlpts.length; } /** {@collect.stats} * Moves the iterator to the next segment of the path forwards * along the primary direction of traversal as long as there are * more points in that direction. */ public void next() { index++; } private static final double angle = Math.PI / 4.0; private static final double a = 1.0 - Math.cos(angle); private static final double b = Math.tan(angle); private static final double c = Math.sqrt(1.0 + b * b) - 1 + a; private static final double cv = 4.0 / 3.0 * a * b / c; private static final double acv = (1.0 - cv) / 2.0; // For each array: // 4 values for each point {v0, v1, v2, v3}: // point = (x + v0 * w + v1 * arcWidth, // y + v2 * h + v3 * arcHeight); private static double ctrlpts[][] = { { 0.0, 0.0, 0.0, 0.5 }, { 0.0, 0.0, 1.0, -0.5 }, { 0.0, 0.0, 1.0, -acv, 0.0, acv, 1.0, 0.0, 0.0, 0.5, 1.0, 0.0 }, { 1.0, -0.5, 1.0, 0.0 }, { 1.0, -acv, 1.0, 0.0, 1.0, 0.0, 1.0, -acv, 1.0, 0.0, 1.0, -0.5 }, { 1.0, 0.0, 0.0, 0.5 }, { 1.0, 0.0, 0.0, acv, 1.0, -acv, 0.0, 0.0, 1.0, -0.5, 0.0, 0.0 }, { 0.0, 0.5, 0.0, 0.0 }, { 0.0, acv, 0.0, 0.0, 0.0, 0.0, 0.0, acv, 0.0, 0.0, 0.0, 0.5 }, {}, }; private static int types[] = { SEG_MOVETO, SEG_LINETO, SEG_CUBICTO, SEG_LINETO, SEG_CUBICTO, SEG_LINETO, SEG_CUBICTO, SEG_LINETO, SEG_CUBICTO, SEG_CLOSE, }; /** {@collect.stats} * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. * A float array of length 6 must be passed in and may be used to * store the coordinates of the point(s). * Each point is stored as a pair of float x,y coordinates. * SEG_MOVETO and SEG_LINETO types will return one point, * SEG_QUADTO will return two points, * SEG_CUBICTO will return 3 points * and SEG_CLOSE will not return any points. * @see #SEG_MOVETO * @see #SEG_LINETO * @see #SEG_QUADTO * @see #SEG_CUBICTO * @see #SEG_CLOSE */ public int currentSegment(float[] coords) { if (isDone()) { throw new NoSuchElementException("roundrect iterator out of bounds"); } double ctrls[] = ctrlpts[index]; int nc = 0; for (int i = 0; i < ctrls.length; i += 4) { coords[nc++] = (float) (x + ctrls[i + 0] * w + ctrls[i + 1] * aw); coords[nc++] = (float) (y + ctrls[i + 2] * h + ctrls[i + 3] * ah); } if (affine != null) { affine.transform(coords, 0, coords, 0, nc / 2); } return types[index]; } /** {@collect.stats} * Returns the coordinates and type of the current path segment in * the iteration. * The return value is the path segment type: * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. * A double array of length 6 must be passed in and may be used to * store the coordinates of the point(s). * Each point is stored as a pair of double x,y coordinates. * SEG_MOVETO and SEG_LINETO types will return one point, * SEG_QUADTO will return two points, * SEG_CUBICTO will return 3 points * and SEG_CLOSE will not return any points. * @see #SEG_MOVETO * @see #SEG_LINETO * @see #SEG_QUADTO * @see #SEG_CUBICTO * @see #SEG_CLOSE */ public int currentSegment(double[] coords) { if (isDone()) { throw new NoSuchElementException("roundrect iterator out of bounds"); } double ctrls[] = ctrlpts[index]; int nc = 0; for (int i = 0; i < ctrls.length; i += 4) { coords[nc++] = (x + ctrls[i + 0] * w + ctrls[i + 1] * aw); coords[nc++] = (y + ctrls[i + 2] * h + ctrls[i + 3] * ah); } if (affine != null) { affine.transform(coords, 0, coords, 0, nc / 2); } return types[index]; } }