/* * GeoTools - The Open Source Java GIS Toolkit * http://geotools.org * * (C) 2001-2006 Vivid Solutions * (C) 2001-2008, Open Source Geospatial Foundation (OSGeo) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. */ package org.geotools.geometry.iso.topograph2D.index; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.List; import org.geotools.geometry.iso.topograph2D.Edge; /** * Finds all intersections in one or two sets of edges, using an x-axis * sweepline algorithm in conjunction with Monotone Chains. While still O(n^2) * in the worst case, this algorithm drastically improves the average-case time. * The use of MonotoneChains as the items in the index seems to offer an * improvement in performance over a sweep-line alone. * * * * * @source $URL$ */ public class SimpleMonotoneChainSweepLineIntersector extends EdgeSetIntersector { List events = new ArrayList(); // statistics information int nOverlaps; /** * A SimpleMCSweepLineIntersector creates monotone chains from the edges and * compares them using a simple sweep-line along the x-axis. */ public SimpleMonotoneChainSweepLineIntersector() { } public void computeIntersections(List edges, SegmentIntersector si, boolean testAllSegments) { if (testAllSegments) add(edges, null); else add(edges); computeIntersections(si); } public void computeIntersections(List edges0, List edges1, SegmentIntersector si) { add(edges0, edges0); add(edges1, edges1); computeIntersections(si); } private void add(List edges) { for (Iterator i = edges.iterator(); i.hasNext();) { Edge edge = (Edge) i.next(); // edge is its own group add(edge, edge); } } private void add(List edges, Object edgeSet) { for (Iterator i = edges.iterator(); i.hasNext();) { Edge edge = (Edge) i.next(); add(edge, edgeSet); } } private void add(Edge edge, Object edgeSet) { MonotoneChainEdge mce = edge.getMonotoneChainEdge(); int[] startIndex = mce.getStartIndexes(); for (int i = 0; i < startIndex.length - 1; i++) { MonotoneChain mc = new MonotoneChain(mce, i); SweepLineEvent insertEvent = new SweepLineEvent(edgeSet, mce .getMinX(i), null, mc); events.add(insertEvent); events.add(new SweepLineEvent(edgeSet, mce.getMaxX(i), insertEvent, mc)); } } /** * Because Delete Events have a link to their corresponding Insert event, it * is possible to compute exactly the range of events which must be compared * to a given Insert event object. */ private void prepareEvents() { Collections.sort(events); for (int i = 0; i < events.size(); i++) { SweepLineEvent ev = (SweepLineEvent) events.get(i); if (ev.isDelete()) { ev.getInsertEvent().setDeleteEventIndex(i); } } } private void computeIntersections(SegmentIntersector si) { nOverlaps = 0; prepareEvents(); for (int i = 0; i < events.size(); i++) { SweepLineEvent ev = (SweepLineEvent) events.get(i); if (ev.isInsert()) { processOverlaps(i, ev.getDeleteEventIndex(), ev, si); } } } private void processOverlaps(int start, int end, SweepLineEvent ev0, SegmentIntersector si) { MonotoneChain mc0 = (MonotoneChain) ev0.getObject(); /** * Since we might need to test for self-intersections, include current * insert event object in list of event objects to test. Last index can * be skipped, because it must be a Delete event. */ for (int i = start; i < end; i++) { SweepLineEvent ev1 = (SweepLineEvent) events.get(i); if (ev1.isInsert()) { MonotoneChain mc1 = (MonotoneChain) ev1.getObject(); // don't compare edges in same group // null group indicates that edges should be compared if (ev0.edgeSet == null || (ev0.edgeSet != ev1.edgeSet)) { mc0.computeIntersections(mc1, si); nOverlaps++; } } } } }