/* * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package com.sun.tools.javac.comp; import java.util.*; import java.util.Set; import com.sun.tools.javac.code.*; import com.sun.tools.javac.jvm.*; import com.sun.tools.javac.tree.*; import com.sun.tools.javac.util.*; import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; import com.sun.tools.javac.util.List; import com.sun.tools.javac.tree.JCTree.*; import com.sun.tools.javac.code.Lint; import com.sun.tools.javac.code.Lint.LintCategory; import com.sun.tools.javac.code.Type.*; import com.sun.tools.javac.code.Symbol.*; import static com.sun.tools.javac.code.Flags.*; import static com.sun.tools.javac.code.Kinds.*; import static com.sun.tools.javac.code.TypeTags.*; /** Type checking helper class for the attribution phase. * * <p><b>This is NOT part of any API supported by Sun Microsystems. If * you write code that depends on this, you do so at your own risk. * This code and its internal interfaces are subject to change or * deletion without notice.</b> */ public class Check { protected static final Context.Key<Check> checkKey = new Context.Key<Check>(); private final Name.Table names; private final Log log; private final Symtab syms; private final Infer infer; private final Target target; private final Source source; private final Types types; private final boolean skipAnnotations; private final TreeInfo treeinfo; // The set of lint options currently in effect. It is initialized // from the context, and then is set/reset as needed by Attr as it // visits all the various parts of the trees during attribution. private Lint lint; public static Check instance(Context context) { Check instance = context.get(checkKey); if (instance == null) instance = new Check(context); return instance; } protected Check(Context context) { context.put(checkKey, this); names = Name.Table.instance(context); log = Log.instance(context); syms = Symtab.instance(context); infer = Infer.instance(context); this.types = Types.instance(context); Options options = Options.instance(context); target = Target.instance(context); source = Source.instance(context); lint = Lint.instance(context); treeinfo = TreeInfo.instance(context); Source source = Source.instance(context); allowGenerics = source.allowGenerics(); allowAnnotations = source.allowAnnotations(); complexInference = options.get("-complexinference") != null; skipAnnotations = options.get("skipAnnotations") != null; boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION); boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED); boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings(); deprecationHandler = new MandatoryWarningHandler(log,verboseDeprecated, enforceMandatoryWarnings, "deprecated"); uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked, enforceMandatoryWarnings, "unchecked"); } /** Switch: generics enabled? */ boolean allowGenerics; /** Switch: annotations enabled? */ boolean allowAnnotations; /** Switch: -complexinference option set? */ boolean complexInference; /** A table mapping flat names of all compiled classes in this run to their * symbols; maintained from outside. */ public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>(); /** A handler for messages about deprecated usage. */ private MandatoryWarningHandler deprecationHandler; /** A handler for messages about unchecked or unsafe usage. */ private MandatoryWarningHandler uncheckedHandler; /* ************************************************************************* * Errors and Warnings **************************************************************************/ Lint setLint(Lint newLint) { Lint prev = lint; lint = newLint; return prev; } /** Warn about deprecated symbol. * @param pos Position to be used for error reporting. * @param sym The deprecated symbol. */ void warnDeprecated(DiagnosticPosition pos, Symbol sym) { if (!lint.isSuppressed(LintCategory.DEPRECATION)) deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location()); } /** Warn about unchecked operation. * @param pos Position to be used for error reporting. * @param msg A string describing the problem. */ public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) { if (!lint.isSuppressed(LintCategory.UNCHECKED)) uncheckedHandler.report(pos, msg, args); } /** * Report any deferred diagnostics. */ public void reportDeferredDiagnostics() { deprecationHandler.reportDeferredDiagnostic(); uncheckedHandler.reportDeferredDiagnostic(); } /** Report a failure to complete a class. * @param pos Position to be used for error reporting. * @param ex The failure to report. */ public Type completionError(DiagnosticPosition pos, CompletionFailure ex) { log.error(pos, "cant.access", ex.sym, ex.errmsg); if (ex instanceof ClassReader.BadClassFile) throw new Abort(); else return syms.errType; } /** Report a type error. * @param pos Position to be used for error reporting. * @param problem A string describing the error. * @param found The type that was found. * @param req The type that was required. */ Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) { log.error(pos, "prob.found.req", problem, found, req); return syms.errType; } Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) { log.error(pos, "prob.found.req.1", problem, found, req, explanation); return syms.errType; } /** Report an error that wrong type tag was found. * @param pos Position to be used for error reporting. * @param required An internationalized string describing the type tag * required. * @param found The type that was found. */ Type typeTagError(DiagnosticPosition pos, Object required, Object found) { log.error(pos, "type.found.req", found, required); return syms.errType; } /** Report an error that symbol cannot be referenced before super * has been called. * @param pos Position to be used for error reporting. * @param sym The referenced symbol. */ void earlyRefError(DiagnosticPosition pos, Symbol sym) { log.error(pos, "cant.ref.before.ctor.called", sym); } /** Report duplicate declaration error. */ void duplicateError(DiagnosticPosition pos, Symbol sym) { if (!sym.type.isErroneous()) { log.error(pos, "already.defined", sym, sym.location()); } } /** Report array/varargs duplicate declaration */ void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) { if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) { log.error(pos, "array.and.varargs", sym1, sym2, sym2.location()); } } /* ************************************************************************ * duplicate declaration checking *************************************************************************/ /** Check that variable does not hide variable with same name in * immediately enclosing local scope. * @param pos Position for error reporting. * @param v The symbol. * @param s The scope. */ void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) { if (s.next != null) { for (Scope.Entry e = s.next.lookup(v.name); e.scope != null && e.sym.owner == v.owner; e = e.next()) { if (e.sym.kind == VAR && (e.sym.owner.kind & (VAR | MTH)) != 0 && v.name != names.error) { duplicateError(pos, e.sym); return; } } } } /** Check that a class or interface does not hide a class or * interface with same name in immediately enclosing local scope. * @param pos Position for error reporting. * @param c The symbol. * @param s The scope. */ void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) { if (s.next != null) { for (Scope.Entry e = s.next.lookup(c.name); e.scope != null && e.sym.owner == c.owner; e = e.next()) { if (e.sym.kind == TYP && (e.sym.owner.kind & (VAR | MTH)) != 0 && c.name != names.error) { duplicateError(pos, e.sym); return; } } } } /** Check that class does not have the same name as one of * its enclosing classes, or as a class defined in its enclosing scope. * return true if class is unique in its enclosing scope. * @param pos Position for error reporting. * @param name The class name. * @param s The enclosing scope. */ boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) { for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) { if (e.sym.kind == TYP && e.sym.name != names.error) { duplicateError(pos, e.sym); return false; } } for (Symbol sym = s.owner; sym != null; sym = sym.owner) { if (sym.kind == TYP && sym.name == name && sym.name != names.error) { duplicateError(pos, sym); return true; } } return true; } /* ************************************************************************* * Class name generation **************************************************************************/ /** Return name of local class. * This is of the form <enclClass> $ n <classname> * where * enclClass is the flat name of the enclosing class, * classname is the simple name of the local class */ Name localClassName(ClassSymbol c) { for (int i=1; ; i++) { Name flatname = names. fromString("" + c.owner.enclClass().flatname + target.syntheticNameChar() + i + c.name); if (compiled.get(flatname) == null) return flatname; } } /* ************************************************************************* * Type Checking **************************************************************************/ /** Check that a given type is assignable to a given proto-type. * If it is, return the type, otherwise return errType. * @param pos Position to be used for error reporting. * @param found The type that was found. * @param req The type that was required. */ Type checkType(DiagnosticPosition pos, Type found, Type req) { if (req.tag == ERROR) return req; if (found.tag == FORALL) return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req)); if (req.tag == NONE) return found; if (types.isAssignable(found, req, convertWarner(pos, found, req))) return found; if (found.tag <= DOUBLE && req.tag <= DOUBLE) return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req); if (found.isSuperBound()) { log.error(pos, "assignment.from.super-bound", found); return syms.errType; } if (req.isExtendsBound()) { log.error(pos, "assignment.to.extends-bound", req); return syms.errType; } return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req); } /** Instantiate polymorphic type to some prototype, unless * prototype is `anyPoly' in which case polymorphic type * is returned unchanged. */ Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) { if (pt == Infer.anyPoly && complexInference) { return t; } else if (pt == Infer.anyPoly || pt.tag == NONE) { Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType; return instantiatePoly(pos, t, newpt, warn); } else if (pt.tag == ERROR) { return pt; } else { try { return infer.instantiateExpr(t, pt, warn); } catch (Infer.NoInstanceException ex) { if (ex.isAmbiguous) { JCDiagnostic d = ex.getDiagnostic(); log.error(pos, "undetermined.type" + (d!=null ? ".1" : ""), t, d); return syms.errType; } else { JCDiagnostic d = ex.getDiagnostic(); return typeError(pos, JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d), t, pt); } } } } /** Check that a given type can be cast to a given target type. * Return the result of the cast. * @param pos Position to be used for error reporting. * @param found The type that is being cast. * @param req The target type of the cast. */ Type checkCastable(DiagnosticPosition pos, Type found, Type req) { if (found.tag == FORALL) { instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req)); return req; } else if (types.isCastable(found, req, castWarner(pos, found, req))) { return req; } else { return typeError(pos, JCDiagnostic.fragment("inconvertible.types"), found, req); } } //where /** Is type a type variable, or a (possibly multi-dimensional) array of * type variables? */ boolean isTypeVar(Type t) { return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t)); } /** Check that a type is within some bounds. * * Used in TypeApply to verify that, e.g., X in V<X> is a valid * type argument. * @param pos Position to be used for error reporting. * @param a The type that should be bounded by bs. * @param bs The bound. */ private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) { if (a.isUnbound()) { return; } else if (a.tag != WILDCARD) { a = types.upperBound(a); for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) { if (!types.isSubtype(a, l.head)) { log.error(pos, "not.within.bounds", a); return; } } } else if (a.isExtendsBound()) { if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings)) log.error(pos, "not.within.bounds", a); } else if (a.isSuperBound()) { if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound())) log.error(pos, "not.within.bounds", a); } } /** Check that type is different from 'void'. * @param pos Position to be used for error reporting. * @param t The type to be checked. */ Type checkNonVoid(DiagnosticPosition pos, Type t) { if (t.tag == VOID) { log.error(pos, "void.not.allowed.here"); return syms.errType; } else { return t; } } /** Check that type is a class or interface type. * @param pos Position to be used for error reporting. * @param t The type to be checked. */ Type checkClassType(DiagnosticPosition pos, Type t) { if (t.tag != CLASS && t.tag != ERROR) return typeTagError(pos, JCDiagnostic.fragment("type.req.class"), (t.tag == TYPEVAR) ? JCDiagnostic.fragment("type.parameter", t) : t); else return t; } /** Check that type is a class or interface type. * @param pos Position to be used for error reporting. * @param t The type to be checked. * @param noBounds True if type bounds are illegal here. */ Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) { t = checkClassType(pos, t); if (noBounds && t.isParameterized()) { List<Type> args = t.getTypeArguments(); while (args.nonEmpty()) { if (args.head.tag == WILDCARD) return typeTagError(pos, log.getLocalizedString("type.req.exact"), args.head); args = args.tail; } } return t; } /** Check that type is a reifiable class, interface or array type. * @param pos Position to be used for error reporting. * @param t The type to be checked. */ Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) { if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) { return typeTagError(pos, JCDiagnostic.fragment("type.req.class.array"), t); } else if (!types.isReifiable(t)) { log.error(pos, "illegal.generic.type.for.instof"); return syms.errType; } else { return t; } } /** Check that type is a reference type, i.e. a class, interface or array type * or a type variable. * @param pos Position to be used for error reporting. * @param t The type to be checked. */ Type checkRefType(DiagnosticPosition pos, Type t) { switch (t.tag) { case CLASS: case ARRAY: case TYPEVAR: case WILDCARD: case ERROR: return t; default: return typeTagError(pos, JCDiagnostic.fragment("type.req.ref"), t); } } /** Check that type is a null or reference type. * @param pos Position to be used for error reporting. * @param t The type to be checked. */ Type checkNullOrRefType(DiagnosticPosition pos, Type t) { switch (t.tag) { case CLASS: case ARRAY: case TYPEVAR: case WILDCARD: case BOT: case ERROR: return t; default: return typeTagError(pos, JCDiagnostic.fragment("type.req.ref"), t); } } /** Check that flag set does not contain elements of two conflicting sets. s * Return true if it doesn't. * @param pos Position to be used for error reporting. * @param flags The set of flags to be checked. * @param set1 Conflicting flags set #1. * @param set2 Conflicting flags set #2. */ boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) { if ((flags & set1) != 0 && (flags & set2) != 0) { log.error(pos, "illegal.combination.of.modifiers", TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)), TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2))); return false; } else return true; } /** Check that given modifiers are legal for given symbol and * return modifiers together with any implicit modififiers for that symbol. * Warning: we can't use flags() here since this method * is called during class enter, when flags() would cause a premature * completion. * @param pos Position to be used for error reporting. * @param flags The set of modifiers given in a definition. * @param sym The defined symbol. */ long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) { long mask; long implicit = 0; switch (sym.kind) { case VAR: if (sym.owner.kind != TYP) mask = LocalVarFlags; else if ((sym.owner.flags_field & INTERFACE) != 0) mask = implicit = InterfaceVarFlags; else mask = VarFlags; break; case MTH: if (sym.name == names.init) { if ((sym.owner.flags_field & ENUM) != 0) { // enum constructors cannot be declared public or // protected and must be implicitly or explicitly // private implicit = PRIVATE; mask = PRIVATE; } else mask = ConstructorFlags; } else if ((sym.owner.flags_field & INTERFACE) != 0) mask = implicit = InterfaceMethodFlags; else { mask = MethodFlags; } // Imply STRICTFP if owner has STRICTFP set. if (((flags|implicit) & Flags.ABSTRACT) == 0) implicit |= sym.owner.flags_field & STRICTFP; break; case TYP: if (sym.isLocal()) { mask = LocalClassFlags; if (sym.name.len == 0) { // Anonymous class // Anonymous classes in static methods are themselves static; // that's why we admit STATIC here. mask |= STATIC; // JLS: Anonymous classes are final. implicit |= FINAL; } if ((sym.owner.flags_field & STATIC) == 0 && (flags & ENUM) != 0) log.error(pos, "enums.must.be.static"); } else if (sym.owner.kind == TYP) { mask = MemberClassFlags; if (sym.owner.owner.kind == PCK || (sym.owner.flags_field & STATIC) != 0) mask |= STATIC; else if ((flags & ENUM) != 0) log.error(pos, "enums.must.be.static"); // Nested interfaces and enums are always STATIC (Spec ???) if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC; } else { mask = ClassFlags; } // Interfaces are always ABSTRACT if ((flags & INTERFACE) != 0) implicit |= ABSTRACT; if ((flags & ENUM) != 0) { // enums can't be declared abstract or final mask &= ~(ABSTRACT | FINAL); implicit |= implicitEnumFinalFlag(tree); } // Imply STRICTFP if owner has STRICTFP set. implicit |= sym.owner.flags_field & STRICTFP; break; default: throw new AssertionError(); } long illegal = flags & StandardFlags & ~mask; if (illegal != 0) { if ((illegal & INTERFACE) != 0) { log.error(pos, "intf.not.allowed.here"); mask |= INTERFACE; } else { log.error(pos, "mod.not.allowed.here", TreeInfo.flagNames(illegal)); } } else if ((sym.kind == TYP || // ISSUE: Disallowing abstract&private is no longer appropriate // in the presence of inner classes. Should it be deleted here? checkDisjoint(pos, flags, ABSTRACT, PRIVATE | STATIC)) && checkDisjoint(pos, flags, ABSTRACT | INTERFACE, FINAL | NATIVE | SYNCHRONIZED) && checkDisjoint(pos, flags, PUBLIC, PRIVATE | PROTECTED) && checkDisjoint(pos, flags, PRIVATE, PUBLIC | PROTECTED) && checkDisjoint(pos, flags, FINAL, VOLATILE) && (sym.kind == TYP || checkDisjoint(pos, flags, ABSTRACT | NATIVE, STRICTFP))) { // skip } return flags & (mask | ~StandardFlags) | implicit; } /** Determine if this enum should be implicitly final. * * If the enum has no specialized enum contants, it is final. * * If the enum does have specialized enum contants, it is * <i>not</i> final. */ private long implicitEnumFinalFlag(JCTree tree) { if (tree.getTag() != JCTree.CLASSDEF) return 0; class SpecialTreeVisitor extends JCTree.Visitor { boolean specialized; SpecialTreeVisitor() { this.specialized = false; }; public void visitTree(JCTree tree) { /* no-op */ } public void visitVarDef(JCVariableDecl tree) { if ((tree.mods.flags & ENUM) != 0) { if (tree.init instanceof JCNewClass && ((JCNewClass) tree.init).def != null) { specialized = true; } } } } SpecialTreeVisitor sts = new SpecialTreeVisitor(); JCClassDecl cdef = (JCClassDecl) tree; for (JCTree defs: cdef.defs) { defs.accept(sts); if (sts.specialized) return 0; } return FINAL; } /* ************************************************************************* * Type Validation **************************************************************************/ /** Validate a type expression. That is, * check that all type arguments of a parametric type are within * their bounds. This must be done in a second phase after type attributon * since a class might have a subclass as type parameter bound. E.g: * * class B<A extends C> { ... } * class C extends B<C> { ... } * * and we can't make sure that the bound is already attributed because * of possible cycles. */ private Validator validator = new Validator(); /** Visitor method: Validate a type expression, if it is not null, catching * and reporting any completion failures. */ void validate(JCTree tree) { try { if (tree != null) tree.accept(validator); } catch (CompletionFailure ex) { completionError(tree.pos(), ex); } } /** Visitor method: Validate a list of type expressions. */ void validate(List<? extends JCTree> trees) { for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail) validate(l.head); } /** Visitor method: Validate a list of type parameters. */ void validateTypeParams(List<JCTypeParameter> trees) { for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail) validate(l.head); } /** A visitor class for type validation. */ class Validator extends JCTree.Visitor { public void visitTypeArray(JCArrayTypeTree tree) { validate(tree.elemtype); } public void visitTypeApply(JCTypeApply tree) { if (tree.type.tag == CLASS) { List<Type> formals = tree.type.tsym.type.getTypeArguments(); List<Type> actuals = tree.type.getTypeArguments(); List<JCExpression> args = tree.arguments; List<Type> forms = formals; ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>(); // For matching pairs of actual argument types `a' and // formal type parameters with declared bound `b' ... while (args.nonEmpty() && forms.nonEmpty()) { validate(args.head); // exact type arguments needs to know their // bounds (for upper and lower bound // calculations). So we create new TypeVars with // bounds substed with actuals. tvars_buf.append(types.substBound(((TypeVar)forms.head), formals, Type.removeBounds(actuals))); args = args.tail; forms = forms.tail; } args = tree.arguments; List<TypeVar> tvars = tvars_buf.toList(); while (args.nonEmpty() && tvars.nonEmpty()) { // Let the actual arguments know their bound args.head.type.withTypeVar(tvars.head); args = args.tail; tvars = tvars.tail; } args = tree.arguments; tvars = tvars_buf.toList(); while (args.nonEmpty() && tvars.nonEmpty()) { checkExtends(args.head.pos(), args.head.type, tvars.head); args = args.tail; tvars = tvars.tail; } // Check that this type is either fully parameterized, or // not parameterized at all. if (tree.type.getEnclosingType().isRaw()) log.error(tree.pos(), "improperly.formed.type.inner.raw.param"); if (tree.clazz.getTag() == JCTree.SELECT) visitSelectInternal((JCFieldAccess)tree.clazz); } } public void visitTypeParameter(JCTypeParameter tree) { validate(tree.bounds); checkClassBounds(tree.pos(), tree.type); } @Override public void visitWildcard(JCWildcard tree) { if (tree.inner != null) validate(tree.inner); } public void visitSelect(JCFieldAccess tree) { if (tree.type.tag == CLASS) { visitSelectInternal(tree); // Check that this type is either fully parameterized, or // not parameterized at all. if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty()) log.error(tree.pos(), "improperly.formed.type.param.missing"); } } public void visitSelectInternal(JCFieldAccess tree) { if (tree.type.getEnclosingType().tag != CLASS && tree.selected.type.isParameterized()) { // The enclosing type is not a class, so we are // looking at a static member type. However, the // qualifying expression is parameterized. log.error(tree.pos(), "cant.select.static.class.from.param.type"); } else { // otherwise validate the rest of the expression validate(tree.selected); } } /** Default visitor method: do nothing. */ public void visitTree(JCTree tree) { } } /* ************************************************************************* * Exception checking **************************************************************************/ /* The following methods treat classes as sets that contain * the class itself and all their subclasses */ /** Is given type a subtype of some of the types in given list? */ boolean subset(Type t, List<Type> ts) { for (List<Type> l = ts; l.nonEmpty(); l = l.tail) if (types.isSubtype(t, l.head)) return true; return false; } /** Is given type a subtype or supertype of * some of the types in given list? */ boolean intersects(Type t, List<Type> ts) { for (List<Type> l = ts; l.nonEmpty(); l = l.tail) if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true; return false; } /** Add type set to given type list, unless it is a subclass of some class * in the list. */ List<Type> incl(Type t, List<Type> ts) { return subset(t, ts) ? ts : excl(t, ts).prepend(t); } /** Remove type set from type set list. */ List<Type> excl(Type t, List<Type> ts) { if (ts.isEmpty()) { return ts; } else { List<Type> ts1 = excl(t, ts.tail); if (types.isSubtype(ts.head, t)) return ts1; else if (ts1 == ts.tail) return ts; else return ts1.prepend(ts.head); } } /** Form the union of two type set lists. */ List<Type> union(List<Type> ts1, List<Type> ts2) { List<Type> ts = ts1; for (List<Type> l = ts2; l.nonEmpty(); l = l.tail) ts = incl(l.head, ts); return ts; } /** Form the difference of two type lists. */ List<Type> diff(List<Type> ts1, List<Type> ts2) { List<Type> ts = ts1; for (List<Type> l = ts2; l.nonEmpty(); l = l.tail) ts = excl(l.head, ts); return ts; } /** Form the intersection of two type lists. */ public List<Type> intersect(List<Type> ts1, List<Type> ts2) { List<Type> ts = List.nil(); for (List<Type> l = ts1; l.nonEmpty(); l = l.tail) if (subset(l.head, ts2)) ts = incl(l.head, ts); for (List<Type> l = ts2; l.nonEmpty(); l = l.tail) if (subset(l.head, ts1)) ts = incl(l.head, ts); return ts; } /** Is exc an exception symbol that need not be declared? */ boolean isUnchecked(ClassSymbol exc) { return exc.kind == ERR || exc.isSubClass(syms.errorType.tsym, types) || exc.isSubClass(syms.runtimeExceptionType.tsym, types); } /** Is exc an exception type that need not be declared? */ boolean isUnchecked(Type exc) { return (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) : (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) : exc.tag == BOT; } /** Same, but handling completion failures. */ boolean isUnchecked(DiagnosticPosition pos, Type exc) { try { return isUnchecked(exc); } catch (CompletionFailure ex) { completionError(pos, ex); return true; } } /** Is exc handled by given exception list? */ boolean isHandled(Type exc, List<Type> handled) { return isUnchecked(exc) || subset(exc, handled); } /** Return all exceptions in thrown list that are not in handled list. * @param thrown The list of thrown exceptions. * @param handled The list of handled exceptions. */ List<Type> unHandled(List<Type> thrown, List<Type> handled) { List<Type> unhandled = List.nil(); for (List<Type> l = thrown; l.nonEmpty(); l = l.tail) if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head); return unhandled; } /* ************************************************************************* * Overriding/Implementation checking **************************************************************************/ /** The level of access protection given by a flag set, * where PRIVATE is highest and PUBLIC is lowest. */ static int protection(long flags) { switch ((short)(flags & AccessFlags)) { case PRIVATE: return 3; case PROTECTED: return 1; default: case PUBLIC: return 0; case 0: return 2; } } /** A string describing the access permission given by a flag set. * This always returns a space-separated list of Java Keywords. */ private static String protectionString(long flags) { long flags1 = flags & AccessFlags; return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1); } /** A customized "cannot override" error message. * @param m The overriding method. * @param other The overridden method. * @return An internationalized string. */ static Object cannotOverride(MethodSymbol m, MethodSymbol other) { String key; if ((other.owner.flags() & INTERFACE) == 0) key = "cant.override"; else if ((m.owner.flags() & INTERFACE) == 0) key = "cant.implement"; else key = "clashes.with"; return JCDiagnostic.fragment(key, m, m.location(), other, other.location()); } /** A customized "override" warning message. * @param m The overriding method. * @param other The overridden method. * @return An internationalized string. */ static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) { String key; if ((other.owner.flags() & INTERFACE) == 0) key = "unchecked.override"; else if ((m.owner.flags() & INTERFACE) == 0) key = "unchecked.implement"; else key = "unchecked.clash.with"; return JCDiagnostic.fragment(key, m, m.location(), other, other.location()); } /** A customized "override" warning message. * @param m The overriding method. * @param other The overridden method. * @return An internationalized string. */ static Object varargsOverrides(MethodSymbol m, MethodSymbol other) { String key; if ((other.owner.flags() & INTERFACE) == 0) key = "varargs.override"; else if ((m.owner.flags() & INTERFACE) == 0) key = "varargs.implement"; else key = "varargs.clash.with"; return JCDiagnostic.fragment(key, m, m.location(), other, other.location()); } /** Check that this method conforms with overridden method 'other'. * where `origin' is the class where checking started. * Complications: * (1) Do not check overriding of synthetic methods * (reason: they might be final). * todo: check whether this is still necessary. * (2) Admit the case where an interface proxy throws fewer exceptions * than the method it implements. Augment the proxy methods with the * undeclared exceptions in this case. * (3) When generics are enabled, admit the case where an interface proxy * has a result type * extended by the result type of the method it implements. * Change the proxies result type to the smaller type in this case. * * @param tree The tree from which positions * are extracted for errors. * @param m The overriding method. * @param other The overridden method. * @param origin The class of which the overriding method * is a member. */ void checkOverride(JCTree tree, MethodSymbol m, MethodSymbol other, ClassSymbol origin) { // Don't check overriding of synthetic methods or by bridge methods. if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) { return; } // Error if static method overrides instance method (JLS 8.4.6.2). if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) == 0) { log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static", cannotOverride(m, other)); return; } // Error if instance method overrides static or final // method (JLS 8.4.6.1). if ((other.flags() & FINAL) != 0 || (m.flags() & STATIC) == 0 && (other.flags() & STATIC) != 0) { log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth", cannotOverride(m, other), TreeInfo.flagNames(other.flags() & (FINAL | STATIC))); return; } if ((m.owner.flags() & ANNOTATION) != 0) { // handled in validateAnnotationMethod return; } // Error if overriding method has weaker access (JLS 8.4.6.3). if ((origin.flags() & INTERFACE) == 0 && protection(m.flags()) > protection(other.flags())) { log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access", cannotOverride(m, other), protectionString(other.flags())); return; } Type mt = types.memberType(origin.type, m); Type ot = types.memberType(origin.type, other); // Error if overriding result type is different // (or, in the case of generics mode, not a subtype) of // overridden result type. We have to rename any type parameters // before comparing types. List<Type> mtvars = mt.getTypeArguments(); List<Type> otvars = ot.getTypeArguments(); Type mtres = mt.getReturnType(); Type otres = types.subst(ot.getReturnType(), otvars, mtvars); overrideWarner.warned = false; boolean resultTypesOK = types.returnTypeSubstitutable(mt, ot, otres, overrideWarner); if (!resultTypesOK) { if (!source.allowCovariantReturns() && m.owner != origin && m.owner.isSubClass(other.owner, types)) { // allow limited interoperability with covariant returns } else { typeError(TreeInfo.diagnosticPositionFor(m, tree), JCDiagnostic.fragment("override.incompatible.ret", cannotOverride(m, other)), mtres, otres); return; } } else if (overrideWarner.warned) { warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree), "prob.found.req", JCDiagnostic.fragment("override.unchecked.ret", uncheckedOverrides(m, other)), mtres, otres); } // Error if overriding method throws an exception not reported // by overridden method. List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars); List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown); if (unhandled.nonEmpty()) { log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth.doesnt.throw", cannotOverride(m, other), unhandled.head); return; } // Optional warning if varargs don't agree if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0) && lint.isEnabled(Lint.LintCategory.OVERRIDES)) { log.warning(TreeInfo.diagnosticPositionFor(m, tree), ((m.flags() & Flags.VARARGS) != 0) ? "override.varargs.missing" : "override.varargs.extra", varargsOverrides(m, other)); } // Warn if instance method overrides bridge method (compiler spec ??) if ((other.flags() & BRIDGE) != 0) { log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge", uncheckedOverrides(m, other)); } // Warn if a deprecated method overridden by a non-deprecated one. if ((other.flags() & DEPRECATED) != 0 && (m.flags() & DEPRECATED) == 0 && m.outermostClass() != other.outermostClass() && !isDeprecatedOverrideIgnorable(other, origin)) { warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other); } } // where private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) { // If the method, m, is defined in an interface, then ignore the issue if the method // is only inherited via a supertype and also implemented in the supertype, // because in that case, we will rediscover the issue when examining the method // in the supertype. // If the method, m, is not defined in an interface, then the only time we need to // address the issue is when the method is the supertype implemementation: any other // case, we will have dealt with when examining the supertype classes ClassSymbol mc = m.enclClass(); Type st = types.supertype(origin.type); if (st.tag != CLASS) return true; MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false); if (mc != null && ((mc.flags() & INTERFACE) != 0)) { List<Type> intfs = types.interfaces(origin.type); return (intfs.contains(mc.type) ? false : (stimpl != null)); } else return (stimpl != m); } // used to check if there were any unchecked conversions Warner overrideWarner = new Warner(); /** Check that a class does not inherit two concrete methods * with the same signature. * @param pos Position to be used for error reporting. * @param site The class type to be checked. */ public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) { Type sup = types.supertype(site); if (sup.tag != CLASS) return; for (Type t1 = sup; t1.tsym.type.isParameterized(); t1 = types.supertype(t1)) { for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) { Symbol s1 = e1.sym; if (s1.kind != MTH || (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 || !s1.isInheritedIn(site.tsym, types) || ((MethodSymbol)s1).implementation(site.tsym, types, true) != s1) continue; Type st1 = types.memberType(t1, s1); int s1ArgsLength = st1.getParameterTypes().length(); if (st1 == s1.type) continue; for (Type t2 = sup; t2.tag == CLASS; t2 = types.supertype(t2)) { for (Scope.Entry e2 = t1.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) { Symbol s2 = e2.sym; if (s2 == s1 || s2.kind != MTH || (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 || s2.type.getParameterTypes().length() != s1ArgsLength || !s2.isInheritedIn(site.tsym, types) || ((MethodSymbol)s2).implementation(site.tsym, types, true) != s2) continue; Type st2 = types.memberType(t2, s2); if (types.overrideEquivalent(st1, st2)) log.error(pos, "concrete.inheritance.conflict", s1, t1, s2, t2, sup); } } } } } /** Check that classes (or interfaces) do not each define an abstract * method with same name and arguments but incompatible return types. * @param pos Position to be used for error reporting. * @param t1 The first argument type. * @param t2 The second argument type. */ public boolean checkCompatibleAbstracts(DiagnosticPosition pos, Type t1, Type t2) { return checkCompatibleAbstracts(pos, t1, t2, types.makeCompoundType(t1, t2)); } public boolean checkCompatibleAbstracts(DiagnosticPosition pos, Type t1, Type t2, Type site) { Symbol sym = firstIncompatibility(t1, t2, site); if (sym != null) { log.error(pos, "types.incompatible.diff.ret", t1, t2, sym.name + "(" + types.memberType(t2, sym).getParameterTypes() + ")"); return false; } return true; } /** Return the first method which is defined with same args * but different return types in two given interfaces, or null if none * exists. * @param t1 The first type. * @param t2 The second type. * @param site The most derived type. * @returns symbol from t2 that conflicts with one in t1. */ private Symbol firstIncompatibility(Type t1, Type t2, Type site) { Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>(); closure(t1, interfaces1); Map<TypeSymbol,Type> interfaces2; if (t1 == t2) interfaces2 = interfaces1; else closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>()); for (Type t3 : interfaces1.values()) { for (Type t4 : interfaces2.values()) { Symbol s = firstDirectIncompatibility(t3, t4, site); if (s != null) return s; } } return null; } /** Compute all the supertypes of t, indexed by type symbol. */ private void closure(Type t, Map<TypeSymbol,Type> typeMap) { if (t.tag != CLASS) return; if (typeMap.put(t.tsym, t) == null) { closure(types.supertype(t), typeMap); for (Type i : types.interfaces(t)) closure(i, typeMap); } } /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */ private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) { if (t.tag != CLASS) return; if (typesSkip.get(t.tsym) != null) return; if (typeMap.put(t.tsym, t) == null) { closure(types.supertype(t), typesSkip, typeMap); for (Type i : types.interfaces(t)) closure(i, typesSkip, typeMap); } } /** Return the first method in t2 that conflicts with a method from t1. */ private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) { for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) { Symbol s1 = e1.sym; Type st1 = null; if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue; Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false); if (impl != null && (impl.flags() & ABSTRACT) == 0) continue; for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) { Symbol s2 = e2.sym; if (s1 == s2) continue; if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue; if (st1 == null) st1 = types.memberType(t1, s1); Type st2 = types.memberType(t2, s2); if (types.overrideEquivalent(st1, st2)) { List<Type> tvars1 = st1.getTypeArguments(); List<Type> tvars2 = st2.getTypeArguments(); Type rt1 = st1.getReturnType(); Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1); boolean compat = types.isSameType(rt1, rt2) || rt1.tag >= CLASS && rt2.tag >= CLASS && (types.covariantReturnType(rt1, rt2, Warner.noWarnings) || types.covariantReturnType(rt2, rt1, Warner.noWarnings)); if (!compat) return s2; } } } return null; } /** Check that a given method conforms with any method it overrides. * @param tree The tree from which positions are extracted * for errors. * @param m The overriding method. */ void checkOverride(JCTree tree, MethodSymbol m) { ClassSymbol origin = (ClassSymbol)m.owner; if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) if (m.overrides(syms.enumFinalFinalize, origin, types, false)) { log.error(tree.pos(), "enum.no.finalize"); return; } for (Type t = types.supertype(origin.type); t.tag == CLASS; t = types.supertype(t)) { TypeSymbol c = t.tsym; Scope.Entry e = c.members().lookup(m.name); while (e.scope != null) { if (m.overrides(e.sym, origin, types, false)) checkOverride(tree, m, (MethodSymbol)e.sym, origin); e = e.next(); } } } /** Check that all abstract members of given class have definitions. * @param pos Position to be used for error reporting. * @param c The class. */ void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) { try { MethodSymbol undef = firstUndef(c, c); if (undef != null) { if ((c.flags() & ENUM) != 0 && types.supertype(c.type).tsym == syms.enumSym && (c.flags() & FINAL) == 0) { // add the ABSTRACT flag to an enum c.flags_field |= ABSTRACT; } else { MethodSymbol undef1 = new MethodSymbol(undef.flags(), undef.name, types.memberType(c.type, undef), undef.owner); log.error(pos, "does.not.override.abstract", c, undef1, undef1.location()); } } } catch (CompletionFailure ex) { completionError(pos, ex); } } //where /** Return first abstract member of class `c' that is not defined * in `impl', null if there is none. */ private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) { MethodSymbol undef = null; // Do not bother to search in classes that are not abstract, // since they cannot have abstract members. if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) { Scope s = c.members(); for (Scope.Entry e = s.elems; undef == null && e != null; e = e.sibling) { if (e.sym.kind == MTH && (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) { MethodSymbol absmeth = (MethodSymbol)e.sym; MethodSymbol implmeth = absmeth.implementation(impl, types, true); if (implmeth == null || implmeth == absmeth) undef = absmeth; } } if (undef == null) { Type st = types.supertype(c.type); if (st.tag == CLASS) undef = firstUndef(impl, (ClassSymbol)st.tsym); } for (List<Type> l = types.interfaces(c.type); undef == null && l.nonEmpty(); l = l.tail) { undef = firstUndef(impl, (ClassSymbol)l.head.tsym); } } return undef; } /** Check for cyclic references. Issue an error if the * symbol of the type referred to has a LOCKED flag set. * * @param pos Position to be used for error reporting. * @param t The type referred to. */ void checkNonCyclic(DiagnosticPosition pos, Type t) { checkNonCyclicInternal(pos, t); } void checkNonCyclic(DiagnosticPosition pos, TypeVar t) { checkNonCyclic1(pos, t, new HashSet<TypeVar>()); } private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) { final TypeVar tv; if (seen.contains(t)) { tv = (TypeVar)t; tv.bound = new ErrorType(); log.error(pos, "cyclic.inheritance", t); } else if (t.tag == TYPEVAR) { tv = (TypeVar)t; seen.add(tv); for (Type b : types.getBounds(tv)) checkNonCyclic1(pos, b, seen); } } /** Check for cyclic references. Issue an error if the * symbol of the type referred to has a LOCKED flag set. * * @param pos Position to be used for error reporting. * @param t The type referred to. * @returns True if the check completed on all attributed classes */ private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) { boolean complete = true; // was the check complete? //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG Symbol c = t.tsym; if ((c.flags_field & ACYCLIC) != 0) return true; if ((c.flags_field & LOCKED) != 0) { noteCyclic(pos, (ClassSymbol)c); } else if (!c.type.isErroneous()) { try { c.flags_field |= LOCKED; if (c.type.tag == CLASS) { ClassType clazz = (ClassType)c.type; if (clazz.interfaces_field != null) for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail) complete &= checkNonCyclicInternal(pos, l.head); if (clazz.supertype_field != null) { Type st = clazz.supertype_field; if (st != null && st.tag == CLASS) complete &= checkNonCyclicInternal(pos, st); } if (c.owner.kind == TYP) complete &= checkNonCyclicInternal(pos, c.owner.type); } } finally { c.flags_field &= ~LOCKED; } } if (complete) complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null; if (complete) c.flags_field |= ACYCLIC; return complete; } /** Note that we found an inheritance cycle. */ private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) { log.error(pos, "cyclic.inheritance", c); for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail) l.head = new ErrorType((ClassSymbol)l.head.tsym); Type st = types.supertype(c.type); if (st.tag == CLASS) ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym); c.type = new ErrorType(c); c.flags_field |= ACYCLIC; } /** Check that all methods which implement some * method conform to the method they implement. * @param tree The class definition whose members are checked. */ void checkImplementations(JCClassDecl tree) { checkImplementations(tree, tree.sym); } //where /** Check that all methods which implement some * method in `ic' conform to the method they implement. */ void checkImplementations(JCClassDecl tree, ClassSymbol ic) { ClassSymbol origin = tree.sym; for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) { ClassSymbol lc = (ClassSymbol)l.head.tsym; if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) { for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) { if (e.sym.kind == MTH && (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) { MethodSymbol absmeth = (MethodSymbol)e.sym; MethodSymbol implmeth = absmeth.implementation(origin, types, false); if (implmeth != null && implmeth != absmeth && (implmeth.owner.flags() & INTERFACE) == (origin.flags() & INTERFACE)) { // don't check if implmeth is in a class, yet // origin is an interface. This case arises only // if implmeth is declared in Object. The reason is // that interfaces really don't inherit from // Object it's just that the compiler represents // things that way. checkOverride(tree, implmeth, absmeth, origin); } } } } } } /** Check that all abstract methods implemented by a class are * mutually compatible. * @param pos Position to be used for error reporting. * @param c The class whose interfaces are checked. */ void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) { List<Type> supertypes = types.interfaces(c); Type supertype = types.supertype(c); if (supertype.tag == CLASS && (supertype.tsym.flags() & ABSTRACT) != 0) supertypes = supertypes.prepend(supertype); for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) { if (allowGenerics && !l.head.getTypeArguments().isEmpty() && !checkCompatibleAbstracts(pos, l.head, l.head, c)) return; for (List<Type> m = supertypes; m != l; m = m.tail) if (!checkCompatibleAbstracts(pos, l.head, m.head, c)) return; } checkCompatibleConcretes(pos, c); } /** Check that class c does not implement directly or indirectly * the same parameterized interface with two different argument lists. * @param pos Position to be used for error reporting. * @param type The type whose interfaces are checked. */ void checkClassBounds(DiagnosticPosition pos, Type type) { checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type); } //where /** Enter all interfaces of type `type' into the hash table `seensofar' * with their class symbol as key and their type as value. Make * sure no class is entered with two different types. */ void checkClassBounds(DiagnosticPosition pos, Map<TypeSymbol,Type> seensofar, Type type) { if (type.isErroneous()) return; for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) { Type it = l.head; Type oldit = seensofar.put(it.tsym, it); if (oldit != null) { List<Type> oldparams = oldit.allparams(); List<Type> newparams = it.allparams(); if (!types.containsTypeEquivalent(oldparams, newparams)) log.error(pos, "cant.inherit.diff.arg", it.tsym, Type.toString(oldparams), Type.toString(newparams)); } checkClassBounds(pos, seensofar, it); } Type st = types.supertype(type); if (st != null) checkClassBounds(pos, seensofar, st); } /** Enter interface into into set. * If it existed already, issue a "repeated interface" error. */ void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) { if (its.contains(it)) log.error(pos, "repeated.interface"); else { its.add(it); } } /* ************************************************************************* * Check annotations **************************************************************************/ /** Annotation types are restricted to primitives, String, an * enum, an annotation, Class, Class<?>, Class<? extends * Anything>, arrays of the preceding. */ void validateAnnotationType(JCTree restype) { // restype may be null if an error occurred, so don't bother validating it if (restype != null) { validateAnnotationType(restype.pos(), restype.type); } } void validateAnnotationType(DiagnosticPosition pos, Type type) { if (type.isPrimitive()) return; if (types.isSameType(type, syms.stringType)) return; if ((type.tsym.flags() & Flags.ENUM) != 0) return; if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return; if (types.lowerBound(type).tsym == syms.classType.tsym) return; if (types.isArray(type) && !types.isArray(types.elemtype(type))) { validateAnnotationType(pos, types.elemtype(type)); return; } log.error(pos, "invalid.annotation.member.type"); } /** * "It is also a compile-time error if any method declared in an * annotation type has a signature that is override-equivalent to * that of any public or protected method declared in class Object * or in the interface annotation.Annotation." * * @jls3 9.6 Annotation Types */ void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) { for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) { Scope s = sup.tsym.members(); for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) { if (e.sym.kind == MTH && (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 && types.overrideEquivalent(m.type, e.sym.type)) log.error(pos, "intf.annotation.member.clash", e.sym, sup); } } } /** Check the annotations of a symbol. */ public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) { if (skipAnnotations) return; for (JCAnnotation a : annotations) validateAnnotation(a, s); } /** Check an annotation of a symbol. */ public void validateAnnotation(JCAnnotation a, Symbol s) { validateAnnotation(a); if (!annotationApplicable(a, s)) log.error(a.pos(), "annotation.type.not.applicable"); if (a.annotationType.type.tsym == syms.overrideType.tsym) { if (!isOverrider(s)) log.error(a.pos(), "method.does.not.override.superclass"); } } /** Is s a method symbol that overrides a method in a superclass? */ boolean isOverrider(Symbol s) { if (s.kind != MTH || s.isStatic()) return false; MethodSymbol m = (MethodSymbol)s; TypeSymbol owner = (TypeSymbol)m.owner; for (Type sup : types.closure(owner.type)) { if (sup == owner.type) continue; // skip "this" Scope scope = sup.tsym.members(); for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) { if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true)) return true; } } return false; } /** Is the annotation applicable to the symbol? */ boolean annotationApplicable(JCAnnotation a, Symbol s) { Attribute.Compound atTarget = a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym); if (atTarget == null) return true; Attribute atValue = atTarget.member(names.value); if (!(atValue instanceof Attribute.Array)) return true; // error recovery Attribute.Array arr = (Attribute.Array) atValue; for (Attribute app : arr.values) { if (!(app instanceof Attribute.Enum)) return true; // recovery Attribute.Enum e = (Attribute.Enum) app; if (e.value.name == names.TYPE) { if (s.kind == TYP) return true; } else if (e.value.name == names.FIELD) { if (s.kind == VAR && s.owner.kind != MTH) return true; } else if (e.value.name == names.METHOD) { if (s.kind == MTH && !s.isConstructor()) return true; } else if (e.value.name == names.PARAMETER) { if (s.kind == VAR && s.owner.kind == MTH && (s.flags() & PARAMETER) != 0) return true; } else if (e.value.name == names.CONSTRUCTOR) { if (s.kind == MTH && s.isConstructor()) return true; } else if (e.value.name == names.LOCAL_VARIABLE) { if (s.kind == VAR && s.owner.kind == MTH && (s.flags() & PARAMETER) == 0) return true; } else if (e.value.name == names.ANNOTATION_TYPE) { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) return true; } else if (e.value.name == names.PACKAGE) { if (s.kind == PCK) return true; } else return true; // recovery } return false; } /** Check an annotation value. */ public void validateAnnotation(JCAnnotation a) { if (a.type.isErroneous()) return; // collect an inventory of the members Set<MethodSymbol> members = new HashSet<MethodSymbol>(); for (Scope.Entry e = a.annotationType.type.tsym.members().elems; e != null; e = e.sibling) if (e.sym.kind == MTH) members.add((MethodSymbol) e.sym); // count them off as they're annotated for (JCTree arg : a.args) { if (arg.getTag() != JCTree.ASSIGN) continue; // recovery JCAssign assign = (JCAssign) arg; Symbol m = TreeInfo.symbol(assign.lhs); if (m == null || m.type.isErroneous()) continue; if (!members.remove(m)) log.error(arg.pos(), "duplicate.annotation.member.value", m.name, a.type); if (assign.rhs.getTag() == ANNOTATION) validateAnnotation((JCAnnotation)assign.rhs); } // all the remaining ones better have default values for (MethodSymbol m : members) if (m.defaultValue == null && !m.type.isErroneous()) log.error(a.pos(), "annotation.missing.default.value", a.type, m.name); // special case: java.lang.annotation.Target must not have // repeated values in its value member if (a.annotationType.type.tsym != syms.annotationTargetType.tsym || a.args.tail == null) return; if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery JCAssign assign = (JCAssign) a.args.head; Symbol m = TreeInfo.symbol(assign.lhs); if (m.name != names.value) return; JCTree rhs = assign.rhs; if (rhs.getTag() != JCTree.NEWARRAY) return; JCNewArray na = (JCNewArray) rhs; Set<Symbol> targets = new HashSet<Symbol>(); for (JCTree elem : na.elems) { if (!targets.add(TreeInfo.symbol(elem))) { log.error(elem.pos(), "repeated.annotation.target"); } } } void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) { if (allowAnnotations && lint.isEnabled(Lint.LintCategory.DEP_ANN) && (s.flags() & DEPRECATED) != 0 && !syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) == null) { log.warning(pos, "missing.deprecated.annotation"); } } /* ************************************************************************* * Check for recursive annotation elements. **************************************************************************/ /** Check for cycles in the graph of annotation elements. */ void checkNonCyclicElements(JCClassDecl tree) { if ((tree.sym.flags_field & ANNOTATION) == 0) return; assert (tree.sym.flags_field & LOCKED) == 0; try { tree.sym.flags_field |= LOCKED; for (JCTree def : tree.defs) { if (def.getTag() != JCTree.METHODDEF) continue; JCMethodDecl meth = (JCMethodDecl)def; checkAnnotationResType(meth.pos(), meth.restype.type); } } finally { tree.sym.flags_field &= ~LOCKED; tree.sym.flags_field |= ACYCLIC_ANN; } } void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) { if ((tsym.flags_field & ACYCLIC_ANN) != 0) return; if ((tsym.flags_field & LOCKED) != 0) { log.error(pos, "cyclic.annotation.element"); return; } try { tsym.flags_field |= LOCKED; for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) { Symbol s = e.sym; if (s.kind != Kinds.MTH) continue; checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType()); } } finally { tsym.flags_field &= ~LOCKED; tsym.flags_field |= ACYCLIC_ANN; } } void checkAnnotationResType(DiagnosticPosition pos, Type type) { switch (type.tag) { case TypeTags.CLASS: if ((type.tsym.flags() & ANNOTATION) != 0) checkNonCyclicElementsInternal(pos, type.tsym); break; case TypeTags.ARRAY: checkAnnotationResType(pos, types.elemtype(type)); break; default: break; // int etc } } /* ************************************************************************* * Check for cycles in the constructor call graph. **************************************************************************/ /** Check for cycles in the graph of constructors calling other * constructors. */ void checkCyclicConstructors(JCClassDecl tree) { Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>(); // enter each constructor this-call into the map for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head); if (app == null) continue; JCMethodDecl meth = (JCMethodDecl) l.head; if (TreeInfo.name(app.meth) == names._this) { callMap.put(meth.sym, TreeInfo.symbol(app.meth)); } else { meth.sym.flags_field |= ACYCLIC; } } // Check for cycles in the map Symbol[] ctors = new Symbol[0]; ctors = callMap.keySet().toArray(ctors); for (Symbol caller : ctors) { checkCyclicConstructor(tree, caller, callMap); } } /** Look in the map to see if the given constructor is part of a * call cycle. */ private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor, Map<Symbol,Symbol> callMap) { if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) { if ((ctor.flags_field & LOCKED) != 0) { log.error(TreeInfo.diagnosticPositionFor(ctor, tree), "recursive.ctor.invocation"); } else { ctor.flags_field |= LOCKED; checkCyclicConstructor(tree, callMap.remove(ctor), callMap); ctor.flags_field &= ~LOCKED; } ctor.flags_field |= ACYCLIC; } } /* ************************************************************************* * Miscellaneous **************************************************************************/ /** * Return the opcode of the operator but emit an error if it is an * error. * @param pos position for error reporting. * @param operator an operator * @param tag a tree tag * @param left type of left hand side * @param right type of right hand side */ int checkOperator(DiagnosticPosition pos, OperatorSymbol operator, int tag, Type left, Type right) { if (operator.opcode == ByteCodes.error) { log.error(pos, "operator.cant.be.applied", treeinfo.operatorName(tag), left + "," + right); } return operator.opcode; } /** * Check for division by integer constant zero * @param pos Position for error reporting. * @param operator The operator for the expression * @param operand The right hand operand for the expression */ void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) { if (operand.constValue() != null && lint.isEnabled(Lint.LintCategory.DIVZERO) && operand.tag <= LONG && ((Number) (operand.constValue())).longValue() == 0) { int opc = ((OperatorSymbol)operator).opcode; if (opc == ByteCodes.idiv || opc == ByteCodes.imod || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) { log.warning(pos, "div.zero"); } } } /** * Check for empty statements after if */ void checkEmptyIf(JCIf tree) { if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY)) log.warning(tree.thenpart.pos(), "empty.if"); } /** Check that symbol is unique in given scope. * @param pos Position for error reporting. * @param sym The symbol. * @param s The scope. */ boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) { if (sym.type.isErroneous()) return true; if (sym.owner.name == names.any) return false; for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) { if (sym != e.sym && sym.kind == e.sym.kind && sym.name != names.error && (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) { if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) varargsDuplicateError(pos, sym, e.sym); else duplicateError(pos, e.sym); return false; } } return true; } /** Check that single-type import is not already imported or top-level defined, * but make an exception for two single-type imports which denote the same type. * @param pos Position for error reporting. * @param sym The symbol. * @param s The scope */ boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) { return checkUniqueImport(pos, sym, s, false); } /** Check that static single-type import is not already imported or top-level defined, * but make an exception for two single-type imports which denote the same type. * @param pos Position for error reporting. * @param sym The symbol. * @param s The scope * @param staticImport Whether or not this was a static import */ boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) { return checkUniqueImport(pos, sym, s, true); } /** Check that single-type import is not already imported or top-level defined, * but make an exception for two single-type imports which denote the same type. * @param pos Position for error reporting. * @param sym The symbol. * @param s The scope. * @param staticImport Whether or not this was a static import */ private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) { for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) { // is encountered class entered via a class declaration? boolean isClassDecl = e.scope == s; if ((isClassDecl || sym != e.sym) && sym.kind == e.sym.kind && sym.name != names.error) { if (!e.sym.type.isErroneous()) { String what = e.sym.toString(); if (!isClassDecl) { if (staticImport) log.error(pos, "already.defined.static.single.import", what); else log.error(pos, "already.defined.single.import", what); } else if (sym != e.sym) log.error(pos, "already.defined.this.unit", what); } return false; } } return true; } /** Check that a qualified name is in canonical form (for import decls). */ public void checkCanonical(JCTree tree) { if (!isCanonical(tree)) log.error(tree.pos(), "import.requires.canonical", TreeInfo.symbol(tree)); } // where private boolean isCanonical(JCTree tree) { while (tree.getTag() == JCTree.SELECT) { JCFieldAccess s = (JCFieldAccess) tree; if (s.sym.owner != TreeInfo.symbol(s.selected)) return false; tree = s.selected; } return true; } private class ConversionWarner extends Warner { final String key; final Type found; final Type expected; public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) { super(pos); this.key = key; this.found = found; this.expected = expected; } public void warnUnchecked() { boolean warned = this.warned; super.warnUnchecked(); if (warned) return; // suppress redundant diagnostics Object problem = JCDiagnostic.fragment(key); Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected); } } public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) { return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected); } public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) { return new ConversionWarner(pos, "unchecked.assign", found, expected); } }