/* * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package java.util.regex; /** * An engine that performs match operations on a {@link java.lang.CharSequence * </code>character sequence<code>} by interpreting a {@link Pattern}. * * <p> A matcher is created from a pattern by invoking the pattern's {@link * Pattern#matcher matcher} method. Once created, a matcher can be used to * perform three different kinds of match operations: * * <ul> * * <li><p> The {@link #matches matches} method attempts to match the entire * input sequence against the pattern. </p></li> * * <li><p> The {@link #lookingAt lookingAt} method attempts to match the * input sequence, starting at the beginning, against the pattern. </p></li> * * <li><p> The {@link #find find} method scans the input sequence looking for * the next subsequence that matches the pattern. </p></li> * * </ul> * * <p> Each of these methods returns a boolean indicating success or failure. * More information about a successful match can be obtained by querying the * state of the matcher. * * <p> A matcher finds matches in a subset of its input called the * <i>region</i>. By default, the region contains all of the matcher's input. * The region can be modified via the{@link #region region} method and queried * via the {@link #regionStart regionStart} and {@link #regionEnd regionEnd} * methods. The way that the region boundaries interact with some pattern * constructs can be changed. See {@link #useAnchoringBounds * useAnchoringBounds} and {@link #useTransparentBounds useTransparentBounds} * for more details. * * <p> This class also defines methods for replacing matched subsequences with * new strings whose contents can, if desired, be computed from the match * result. The {@link #appendReplacement appendReplacement} and {@link * #appendTail appendTail} methods can be used in tandem in order to collect * the result into an existing string buffer, or the more convenient {@link * #replaceAll replaceAll} method can be used to create a string in which every * matching subsequence in the input sequence is replaced. * * <p> The explicit state of a matcher includes the start and end indices of * the most recent successful match. It also includes the start and end * indices of the input subsequence captured by each <a * href="Pattern.html#cg">capturing group</a> in the pattern as well as a total * count of such subsequences. As a convenience, methods are also provided for * returning these captured subsequences in string form. * * <p> The explicit state of a matcher is initially undefined; attempting to * query any part of it before a successful match will cause an {@link * IllegalStateException} to be thrown. The explicit state of a matcher is * recomputed by every match operation. * * <p> The implicit state of a matcher includes the input character sequence as * well as the <i>append position</i>, which is initially zero and is updated * by the {@link #appendReplacement appendReplacement} method. * * <p> A matcher may be reset explicitly by invoking its {@link #reset()} * method or, if a new input sequence is desired, its {@link * #reset(java.lang.CharSequence) reset(CharSequence)} method. Resetting a * matcher discards its explicit state information and sets the append position * to zero. * * <p> Instances of this class are not safe for use by multiple concurrent * threads. </p> * * * @author Mike McCloskey * @author Mark Reinhold * @author JSR-51 Expert Group * @since 1.4 * @spec JSR-51 */ public final class Matcher implements MatchResult { /** * The Pattern object that created this Matcher. */ Pattern parentPattern; /** * The storage used by groups. They may contain invalid values if * a group was skipped during the matching. */ int[] groups; /** * The range within the sequence that is to be matched. Anchors * will match at these "hard" boundaries. Changing the region * changes these values. */ int from, to; /** * Lookbehind uses this value to ensure that the subexpression * match ends at the point where the lookbehind was encountered. */ int lookbehindTo; /** * The original string being matched. */ CharSequence text; /** * Matcher state used by the last node. NOANCHOR is used when a * match does not have to consume all of the input. ENDANCHOR is * the mode used for matching all the input. */ static final int ENDANCHOR = 1; static final int NOANCHOR = 0; int acceptMode = NOANCHOR; /** * The range of string that last matched the pattern. If the last * match failed then first is -1; last initially holds 0 then it * holds the index of the end of the last match (which is where the * next search starts). */ int first = -1, last = 0; /** * The end index of what matched in the last match operation. */ int oldLast = -1; /** * The index of the last position appended in a substitution. */ int lastAppendPosition = 0; /** * Storage used by nodes to tell what repetition they are on in * a pattern, and where groups begin. The nodes themselves are stateless, * so they rely on this field to hold state during a match. */ int[] locals; /** * Boolean indicating whether or not more input could change * the results of the last match. * * If hitEnd is true, and a match was found, then more input * might cause a different match to be found. * If hitEnd is true and a match was not found, then more * input could cause a match to be found. * If hitEnd is false and a match was found, then more input * will not change the match. * If hitEnd is false and a match was not found, then more * input will not cause a match to be found. */ boolean hitEnd; /** * Boolean indicating whether or not more input could change * a positive match into a negative one. * * If requireEnd is true, and a match was found, then more * input could cause the match to be lost. * If requireEnd is false and a match was found, then more * input might change the match but the match won't be lost. * If a match was not found, then requireEnd has no meaning. */ boolean requireEnd; /** * If transparentBounds is true then the boundaries of this * matcher's region are transparent to lookahead, lookbehind, * and boundary matching constructs that try to see beyond them. */ boolean transparentBounds = false; /** * If anchoringBounds is true then the boundaries of this * matcher's region match anchors such as ^ and $. */ boolean anchoringBounds = true; /** * No default constructor. */ Matcher() { } /** * All matchers have the state used by Pattern during a match. */ Matcher(Pattern parent, CharSequence text) { this.parentPattern = parent; this.text = text; // Allocate state storage int parentGroupCount = Math.max(parent.capturingGroupCount, 10); groups = new int[parentGroupCount * 2]; locals = new int[parent.localCount]; // Put fields into initial states reset(); } /** * Returns the pattern that is interpreted by this matcher. * * @return The pattern for which this matcher was created */ public Pattern pattern() { return parentPattern; } /** * Returns the match state of this matcher as a {@link MatchResult}. * The result is unaffected by subsequent operations performed upon this * matcher. * * @return a <code>MatchResult</code> with the state of this matcher * @since 1.5 */ public MatchResult toMatchResult() { Matcher result = new Matcher(this.parentPattern, text.toString()); result.first = this.first; result.last = this.last; result.groups = (int[])(this.groups.clone()); return result; } /** * Changes the <tt>Pattern</tt> that this <tt>Matcher</tt> uses to * find matches with. * * <p> This method causes this matcher to lose information * about the groups of the last match that occurred. The * matcher's position in the input is maintained and its * last append position is unaffected.</p> * * @param newPattern * The new pattern used by this matcher * @return This matcher * @throws IllegalArgumentException * If newPattern is <tt>null</tt> * @since 1.5 */ public Matcher usePattern(Pattern newPattern) { if (newPattern == null) throw new IllegalArgumentException("Pattern cannot be null"); parentPattern = newPattern; // Reallocate state storage int parentGroupCount = Math.max(newPattern.capturingGroupCount, 10); groups = new int[parentGroupCount * 2]; locals = new int[newPattern.localCount]; for (int i = 0; i < groups.length; i++) groups[i] = -1; for (int i = 0; i < locals.length; i++) locals[i] = -1; return this; } /** * Resets this matcher. * * <p> Resetting a matcher discards all of its explicit state information * and sets its append position to zero. The matcher's region is set to the * default region, which is its entire character sequence. The anchoring * and transparency of this matcher's region boundaries are unaffected. * * @return This matcher */ public Matcher reset() { first = -1; last = 0; oldLast = -1; for(int i=0; i<groups.length; i++) groups[i] = -1; for(int i=0; i<locals.length; i++) locals[i] = -1; lastAppendPosition = 0; from = 0; to = getTextLength(); return this; } /** * Resets this matcher with a new input sequence. * * <p> Resetting a matcher discards all of its explicit state information * and sets its append position to zero. The matcher's region is set to * the default region, which is its entire character sequence. The * anchoring and transparency of this matcher's region boundaries are * unaffected. * * @param input * The new input character sequence * * @return This matcher */ public Matcher reset(CharSequence input) { text = input; return reset(); } /** * Returns the start index of the previous match. </p> * * @return The index of the first character matched * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed */ public int start() { if (first < 0) throw new IllegalStateException("No match available"); return first; } /** * Returns the start index of the subsequence captured by the given group * during the previous match operation. * * <p> <a href="Pattern.html#cg">Capturing groups</a> are indexed from left * to right, starting at one. Group zero denotes the entire pattern, so * the expression <i>m.</i><tt>start(0)</tt> is equivalent to * <i>m.</i><tt>start()</tt>. </p> * * @param group * The index of a capturing group in this matcher's pattern * * @return The index of the first character captured by the group, * or <tt>-1</tt> if the match was successful but the group * itself did not match anything * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed * * @throws IndexOutOfBoundsException * If there is no capturing group in the pattern * with the given index */ public int start(int group) { if (first < 0) throw new IllegalStateException("No match available"); if (group > groupCount()) throw new IndexOutOfBoundsException("No group " + group); return groups[group * 2]; } /** * Returns the offset after the last character matched. </p> * * @return The offset after the last character matched * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed */ public int end() { if (first < 0) throw new IllegalStateException("No match available"); return last; } /** * Returns the offset after the last character of the subsequence * captured by the given group during the previous match operation. * * <p> <a href="Pattern.html#cg">Capturing groups</a> are indexed from left * to right, starting at one. Group zero denotes the entire pattern, so * the expression <i>m.</i><tt>end(0)</tt> is equivalent to * <i>m.</i><tt>end()</tt>. </p> * * @param group * The index of a capturing group in this matcher's pattern * * @return The offset after the last character captured by the group, * or <tt>-1</tt> if the match was successful * but the group itself did not match anything * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed * * @throws IndexOutOfBoundsException * If there is no capturing group in the pattern * with the given index */ public int end(int group) { if (first < 0) throw new IllegalStateException("No match available"); if (group > groupCount()) throw new IndexOutOfBoundsException("No group " + group); return groups[group * 2 + 1]; } /** * Returns the input subsequence matched by the previous match. * * <p> For a matcher <i>m</i> with input sequence <i>s</i>, * the expressions <i>m.</i><tt>group()</tt> and * <i>s.</i><tt>substring(</tt><i>m.</i><tt>start(),</tt> <i>m.</i><tt>end())</tt> * are equivalent. </p> * * <p> Note that some patterns, for example <tt>a*</tt>, match the empty * string. This method will return the empty string when the pattern * successfully matches the empty string in the input. </p> * * @return The (possibly empty) subsequence matched by the previous match, * in string form * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed */ public String group() { return group(0); } /** * Returns the input subsequence captured by the given group during the * previous match operation. * * <p> For a matcher <i>m</i>, input sequence <i>s</i>, and group index * <i>g</i>, the expressions <i>m.</i><tt>group(</tt><i>g</i><tt>)</tt> and * <i>s.</i><tt>substring(</tt><i>m.</i><tt>start(</tt><i>g</i><tt>),</tt> <i>m.</i><tt>end(</tt><i>g</i><tt>))</tt> * are equivalent. </p> * * <p> <a href="Pattern.html#cg">Capturing groups</a> are indexed from left * to right, starting at one. Group zero denotes the entire pattern, so * the expression <tt>m.group(0)</tt> is equivalent to <tt>m.group()</tt>. * </p> * * <p> If the match was successful but the group specified failed to match * any part of the input sequence, then <tt>null</tt> is returned. Note * that some groups, for example <tt>(a*)</tt>, match the empty string. * This method will return the empty string when such a group successfully * matches the empty string in the input. </p> * * @param group * The index of a capturing group in this matcher's pattern * * @return The (possibly empty) subsequence captured by the group * during the previous match, or <tt>null</tt> if the group * failed to match part of the input * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed * * @throws IndexOutOfBoundsException * If there is no capturing group in the pattern * with the given index */ public String group(int group) { if (first < 0) throw new IllegalStateException("No match found"); if (group < 0 || group > groupCount()) throw new IndexOutOfBoundsException("No group " + group); if ((groups[group*2] == -1) || (groups[group*2+1] == -1)) return null; return getSubSequence(groups[group * 2], groups[group * 2 + 1]).toString(); } /** * Returns the number of capturing groups in this matcher's pattern. * * <p> Group zero denotes the entire pattern by convention. It is not * included in this count. * * <p> Any non-negative integer smaller than or equal to the value * returned by this method is guaranteed to be a valid group index for * this matcher. </p> * * @return The number of capturing groups in this matcher's pattern */ public int groupCount() { return parentPattern.capturingGroupCount - 1; } /** * Attempts to match the entire region against the pattern. * * <p> If the match succeeds then more information can be obtained via the * <tt>start</tt>, <tt>end</tt>, and <tt>group</tt> methods. </p> * * @return <tt>true</tt> if, and only if, the entire region sequence * matches this matcher's pattern */ public boolean matches() { return match(from, ENDANCHOR); } /** * Attempts to find the next subsequence of the input sequence that matches * the pattern. * * <p> This method starts at the beginning of this matcher's region, or, if * a previous invocation of the method was successful and the matcher has * not since been reset, at the first character not matched by the previous * match. * * <p> If the match succeeds then more information can be obtained via the * <tt>start</tt>, <tt>end</tt>, and <tt>group</tt> methods. </p> * * @return <tt>true</tt> if, and only if, a subsequence of the input * sequence matches this matcher's pattern */ public boolean find() { int nextSearchIndex = last; if (nextSearchIndex == first) nextSearchIndex++; // If next search starts before region, start it at region if (nextSearchIndex < from) nextSearchIndex = from; // If next search starts beyond region then it fails if (nextSearchIndex > to) { for (int i = 0; i < groups.length; i++) groups[i] = -1; return false; } return search(nextSearchIndex); } /** * Resets this matcher and then attempts to find the next subsequence of * the input sequence that matches the pattern, starting at the specified * index. * * <p> If the match succeeds then more information can be obtained via the * <tt>start</tt>, <tt>end</tt>, and <tt>group</tt> methods, and subsequent * invocations of the {@link #find()} method will start at the first * character not matched by this match. </p> * * @throws IndexOutOfBoundsException * If start is less than zero or if start is greater than the * length of the input sequence. * * @return <tt>true</tt> if, and only if, a subsequence of the input * sequence starting at the given index matches this matcher's * pattern */ public boolean find(int start) { int limit = getTextLength(); if ((start < 0) || (start > limit)) throw new IndexOutOfBoundsException("Illegal start index"); reset(); return search(start); } /** * Attempts to match the input sequence, starting at the beginning of the * region, against the pattern. * * <p> Like the {@link #matches matches} method, this method always starts * at the beginning of the region; unlike that method, it does not * require that the entire region be matched. * * <p> If the match succeeds then more information can be obtained via the * <tt>start</tt>, <tt>end</tt>, and <tt>group</tt> methods. </p> * * @return <tt>true</tt> if, and only if, a prefix of the input * sequence matches this matcher's pattern */ public boolean lookingAt() { return match(from, NOANCHOR); } /** * Returns a literal replacement <code>String</code> for the specified * <code>String</code>. * * This method produces a <code>String</code> that will work * as a literal replacement <code>s</code> in the * <code>appendReplacement</code> method of the {@link Matcher} class. * The <code>String</code> produced will match the sequence of characters * in <code>s</code> treated as a literal sequence. Slashes ('\') and * dollar signs ('$') will be given no special meaning. * * @param s The string to be literalized * @return A literal string replacement * @since 1.5 */ public static String quoteReplacement(String s) { if ((s.indexOf('\\') == -1) && (s.indexOf('$') == -1)) return s; StringBuilder sb = new StringBuilder(); for (int i=0; i<s.length(); i++) { char c = s.charAt(i); if (c == '\\' || c == '$') { sb.append('\\'); } sb.append(c); } return sb.toString(); } /** * Implements a non-terminal append-and-replace step. * * <p> This method performs the following actions: </p> * * <ol> * * <li><p> It reads characters from the input sequence, starting at the * append position, and appends them to the given string buffer. It * stops after reading the last character preceding the previous match, * that is, the character at index {@link * #start()} <tt>-</tt> <tt>1</tt>. </p></li> * * <li><p> It appends the given replacement string to the string buffer. * </p></li> * * <li><p> It sets the append position of this matcher to the index of * the last character matched, plus one, that is, to {@link #end()}. * </p></li> * * </ol> * * <p> The replacement string may contain references to subsequences * captured during the previous match: Each occurrence of * <tt>$</tt><i>g</i><tt></tt> will be replaced by the result of * evaluating {@link #group(int) group}<tt>(</tt><i>g</i><tt>)</tt>. * The first number after the <tt>$</tt> is always treated as part of * the group reference. Subsequent numbers are incorporated into g if * they would form a legal group reference. Only the numerals '0' * through '9' are considered as potential components of the group * reference. If the second group matched the string <tt>"foo"</tt>, for * example, then passing the replacement string <tt>"$2bar"</tt> would * cause <tt>"foobar"</tt> to be appended to the string buffer. A dollar * sign (<tt>$</tt>) may be included as a literal in the replacement * string by preceding it with a backslash (<tt>\$</tt>). * * <p> Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in * the replacement string may cause the results to be different than if it * were being treated as a literal replacement string. Dollar signs may be * treated as references to captured subsequences as described above, and * backslashes are used to escape literal characters in the replacement * string. * * <p> This method is intended to be used in a loop together with the * {@link #appendTail appendTail} and {@link #find find} methods. The * following code, for example, writes <tt>one dog two dogs in the * yard</tt> to the standard-output stream: </p> * * <blockquote><pre> * Pattern p = Pattern.compile("cat"); * Matcher m = p.matcher("one cat two cats in the yard"); * StringBuffer sb = new StringBuffer(); * while (m.find()) { * m.appendReplacement(sb, "dog"); * } * m.appendTail(sb); * System.out.println(sb.toString());</pre></blockquote> * * @param sb * The target string buffer * * @param replacement * The replacement string * * @return This matcher * * @throws IllegalStateException * If no match has yet been attempted, * or if the previous match operation failed * * @throws IndexOutOfBoundsException * If the replacement string refers to a capturing group * that does not exist in the pattern */ public Matcher appendReplacement(StringBuffer sb, String replacement) { // If no match, return error if (first < 0) throw new IllegalStateException("No match available"); // Process substitution string to replace group references with groups int cursor = 0; StringBuilder result = new StringBuilder(); while (cursor < replacement.length()) { char nextChar = replacement.charAt(cursor); if (nextChar == '\\') { cursor++; nextChar = replacement.charAt(cursor); result.append(nextChar); cursor++; } else if (nextChar == '$') { // Skip past $ cursor++; // The first number is always a group int refNum = (int)replacement.charAt(cursor) - '0'; if ((refNum < 0)||(refNum > 9)) throw new IllegalArgumentException( "Illegal group reference"); cursor++; // Capture the largest legal group string boolean done = false; while (!done) { if (cursor >= replacement.length()) { break; } int nextDigit = replacement.charAt(cursor) - '0'; if ((nextDigit < 0)||(nextDigit > 9)) { // not a number break; } int newRefNum = (refNum * 10) + nextDigit; if (groupCount() < newRefNum) { done = true; } else { refNum = newRefNum; cursor++; } } // Append group if (start(refNum) != -1 && end(refNum) != -1) result.append(text, start(refNum), end(refNum)); } else { result.append(nextChar); cursor++; } } // Append the intervening text sb.append(text, lastAppendPosition, first); // Append the match substitution sb.append(result); lastAppendPosition = last; return this; } /** * Implements a terminal append-and-replace step. * * <p> This method reads characters from the input sequence, starting at * the append position, and appends them to the given string buffer. It is * intended to be invoked after one or more invocations of the {@link * #appendReplacement appendReplacement} method in order to copy the * remainder of the input sequence. </p> * * @param sb * The target string buffer * * @return The target string buffer */ public StringBuffer appendTail(StringBuffer sb) { sb.append(text, lastAppendPosition, getTextLength()); return sb; } /** * Replaces every subsequence of the input sequence that matches the * pattern with the given replacement string. * * <p> This method first resets this matcher. It then scans the input * sequence looking for matches of the pattern. Characters that are not * part of any match are appended directly to the result string; each match * is replaced in the result by the replacement string. The replacement * string may contain references to captured subsequences as in the {@link * #appendReplacement appendReplacement} method. * * <p> Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in * the replacement string may cause the results to be different than if it * were being treated as a literal replacement string. Dollar signs may be * treated as references to captured subsequences as described above, and * backslashes are used to escape literal characters in the replacement * string. * * <p> Given the regular expression <tt>a*b</tt>, the input * <tt>"aabfooaabfooabfoob"</tt>, and the replacement string * <tt>"-"</tt>, an invocation of this method on a matcher for that * expression would yield the string <tt>"-foo-foo-foo-"</tt>. * * <p> Invoking this method changes this matcher's state. If the matcher * is to be used in further matching operations then it should first be * reset. </p> * * @param replacement * The replacement string * * @return The string constructed by replacing each matching subsequence * by the replacement string, substituting captured subsequences * as needed */ public String replaceAll(String replacement) { reset(); boolean result = find(); if (result) { StringBuffer sb = new StringBuffer(); do { appendReplacement(sb, replacement); result = find(); } while (result); appendTail(sb); return sb.toString(); } return text.toString(); } /** * Replaces the first subsequence of the input sequence that matches the * pattern with the given replacement string. * * <p> This method first resets this matcher. It then scans the input * sequence looking for a match of the pattern. Characters that are not * part of the match are appended directly to the result string; the match * is replaced in the result by the replacement string. The replacement * string may contain references to captured subsequences as in the {@link * #appendReplacement appendReplacement} method. * * <p>Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in * the replacement string may cause the results to be different than if it * were being treated as a literal replacement string. Dollar signs may be * treated as references to captured subsequences as described above, and * backslashes are used to escape literal characters in the replacement * string. * * <p> Given the regular expression <tt>dog</tt>, the input * <tt>"zzzdogzzzdogzzz"</tt>, and the replacement string * <tt>"cat"</tt>, an invocation of this method on a matcher for that * expression would yield the string <tt>"zzzcatzzzdogzzz"</tt>. </p> * * <p> Invoking this method changes this matcher's state. If the matcher * is to be used in further matching operations then it should first be * reset. </p> * * @param replacement * The replacement string * @return The string constructed by replacing the first matching * subsequence by the replacement string, substituting captured * subsequences as needed */ public String replaceFirst(String replacement) { if (replacement == null) throw new NullPointerException("replacement"); reset(); if (!find()) return text.toString(); StringBuffer sb = new StringBuffer(); appendReplacement(sb, replacement); appendTail(sb); return sb.toString(); } /** * Sets the limits of this matcher's region. The region is the part of the * input sequence that will be searched to find a match. Invoking this * method resets the matcher, and then sets the region to start at the * index specified by the <code>start</code> parameter and end at the * index specified by the <code>end</code> parameter. * * <p>Depending on the transparency and anchoring being used (see * {@link #useTransparentBounds useTransparentBounds} and * {@link #useAnchoringBounds useAnchoringBounds}), certain constructs such * as anchors may behave differently at or around the boundaries of the * region. * * @param start * The index to start searching at (inclusive) * @param end * The index to end searching at (exclusive) * @throws IndexOutOfBoundsException * If start or end is less than zero, if * start is greater than the length of the input sequence, if * end is greater than the length of the input sequence, or if * start is greater than end. * @return this matcher * @since 1.5 */ public Matcher region(int start, int end) { if ((start < 0) || (start > getTextLength())) throw new IndexOutOfBoundsException("start"); if ((end < 0) || (end > getTextLength())) throw new IndexOutOfBoundsException("end"); if (start > end) throw new IndexOutOfBoundsException("start > end"); reset(); from = start; to = end; return this; } /** * Reports the start index of this matcher's region. The * searches this matcher conducts are limited to finding matches * within {@link #regionStart regionStart} (inclusive) and * {@link #regionEnd regionEnd} (exclusive). * * @return The starting point of this matcher's region * @since 1.5 */ public int regionStart() { return from; } /** * Reports the end index (exclusive) of this matcher's region. * The searches this matcher conducts are limited to finding matches * within {@link #regionStart regionStart} (inclusive) and * {@link #regionEnd regionEnd} (exclusive). * * @return the ending point of this matcher's region * @since 1.5 */ public int regionEnd() { return to; } /** * Queries the transparency of region bounds for this matcher. * * <p> This method returns <tt>true</tt> if this matcher uses * <i>transparent</i> bounds, <tt>false</tt> if it uses <i>opaque</i> * bounds. * * <p> See {@link #useTransparentBounds useTransparentBounds} for a * description of transparent and opaque bounds. * * <p> By default, a matcher uses opaque region boundaries. * * @return <tt>true</tt> iff this matcher is using transparent bounds, * <tt>false</tt> otherwise. * @see java.util.regex.Matcher#useTransparentBounds(boolean) * @since 1.5 */ public boolean hasTransparentBounds() { return transparentBounds; } /** * Sets the transparency of region bounds for this matcher. * * <p> Invoking this method with an argument of <tt>true</tt> will set this * matcher to use <i>transparent</i> bounds. If the boolean * argument is <tt>false</tt>, then <i>opaque</i> bounds will be used. * * <p> Using transparent bounds, the boundaries of this * matcher's region are transparent to lookahead, lookbehind, * and boundary matching constructs. Those constructs can see beyond the * boundaries of the region to see if a match is appropriate. * * <p> Using opaque bounds, the boundaries of this matcher's * region are opaque to lookahead, lookbehind, and boundary matching * constructs that may try to see beyond them. Those constructs cannot * look past the boundaries so they will fail to match anything outside * of the region. * * <p> By default, a matcher uses opaque bounds. * * @param b a boolean indicating whether to use opaque or transparent * regions * @return this matcher * @see java.util.regex.Matcher#hasTransparentBounds * @since 1.5 */ public Matcher useTransparentBounds(boolean b) { transparentBounds = b; return this; } /** * Queries the anchoring of region bounds for this matcher. * * <p> This method returns <tt>true</tt> if this matcher uses * <i>anchoring</i> bounds, <tt>false</tt> otherwise. * * <p> See {@link #useAnchoringBounds useAnchoringBounds} for a * description of anchoring bounds. * * <p> By default, a matcher uses anchoring region boundaries. * * @return <tt>true</tt> iff this matcher is using anchoring bounds, * <tt>false</tt> otherwise. * @see java.util.regex.Matcher#useAnchoringBounds(boolean) * @since 1.5 */ public boolean hasAnchoringBounds() { return anchoringBounds; } /** * Sets the anchoring of region bounds for this matcher. * * <p> Invoking this method with an argument of <tt>true</tt> will set this * matcher to use <i>anchoring</i> bounds. If the boolean * argument is <tt>false</tt>, then <i>non-anchoring</i> bounds will be * used. * * <p> Using anchoring bounds, the boundaries of this * matcher's region match anchors such as ^ and $. * * <p> Without anchoring bounds, the boundaries of this * matcher's region will not match anchors such as ^ and $. * * <p> By default, a matcher uses anchoring region boundaries. * * @param b a boolean indicating whether or not to use anchoring bounds. * @return this matcher * @see java.util.regex.Matcher#hasAnchoringBounds * @since 1.5 */ public Matcher useAnchoringBounds(boolean b) { anchoringBounds = b; return this; } /** * <p>Returns the string representation of this matcher. The * string representation of a <code>Matcher</code> contains information * that may be useful for debugging. The exact format is unspecified. * * @return The string representation of this matcher * @since 1.5 */ public String toString() { StringBuilder sb = new StringBuilder(); sb.append("java.util.regex.Matcher"); sb.append("[pattern=" + pattern()); sb.append(" region="); sb.append(regionStart() + "," + regionEnd()); sb.append(" lastmatch="); if ((first >= 0) && (group() != null)) { sb.append(group()); } sb.append("]"); return sb.toString(); } /** * <p>Returns true if the end of input was hit by the search engine in * the last match operation performed by this matcher. * * <p>When this method returns true, then it is possible that more input * would have changed the result of the last search. * * @return true iff the end of input was hit in the last match; false * otherwise * @since 1.5 */ public boolean hitEnd() { return hitEnd; } /** * <p>Returns true if more input could change a positive match into a * negative one. * * <p>If this method returns true, and a match was found, then more * input could cause the match to be lost. If this method returns false * and a match was found, then more input might change the match but the * match won't be lost. If a match was not found, then requireEnd has no * meaning. * * @return true iff more input could change a positive match into a * negative one. * @since 1.5 */ public boolean requireEnd() { return requireEnd; } /** * Initiates a search to find a Pattern within the given bounds. * The groups are filled with default values and the match of the root * of the state machine is called. The state machine will hold the state * of the match as it proceeds in this matcher. * * Matcher.from is not set here, because it is the "hard" boundary * of the start of the search which anchors will set to. The from param * is the "soft" boundary of the start of the search, meaning that the * regex tries to match at that index but ^ won't match there. Subsequent * calls to the search methods start at a new "soft" boundary which is * the end of the previous match. */ boolean search(int from) { this.hitEnd = false; this.requireEnd = false; from = from < 0 ? 0 : from; this.first = from; this.oldLast = oldLast < 0 ? from : oldLast; for (int i = 0; i < groups.length; i++) groups[i] = -1; acceptMode = NOANCHOR; boolean result = parentPattern.root.match(this, from, text); if (!result) this.first = -1; this.oldLast = this.last; return result; } /** * Initiates a search for an anchored match to a Pattern within the given * bounds. The groups are filled with default values and the match of the * root of the state machine is called. The state machine will hold the * state of the match as it proceeds in this matcher. */ boolean match(int from, int anchor) { this.hitEnd = false; this.requireEnd = false; from = from < 0 ? 0 : from; this.first = from; this.oldLast = oldLast < 0 ? from : oldLast; for (int i = 0; i < groups.length; i++) groups[i] = -1; acceptMode = anchor; boolean result = parentPattern.matchRoot.match(this, from, text); if (!result) this.first = -1; this.oldLast = this.last; return result; } /** * Returns the end index of the text. * * @return the index after the last character in the text */ int getTextLength() { return text.length(); } /** * Generates a String from this Matcher's input in the specified range. * * @param beginIndex the beginning index, inclusive * @param endIndex the ending index, exclusive * @return A String generated from this Matcher's input */ CharSequence getSubSequence(int beginIndex, int endIndex) { return text.subSequence(beginIndex, endIndex); } /** * Returns this Matcher's input character at index i. * * @return A char from the specified index */ char charAt(int i) { return text.charAt(i); } }