package org.apache.lucene.util; /** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.apache.lucene.analysis.NumericTokenStream; // for javadocs import org.apache.lucene.document.NumericField; // for javadocs import org.apache.lucene.search.NumericRangeQuery; // for javadocs import org.apache.lucene.search.NumericRangeFilter; // for javadocs // TODO: Remove the commented out methods before release! /** * This is a helper class to generate prefix-encoded representations for numerical values * and supplies converters to represent float/double values as sortable integers/longs. * * <p>To quickly execute range queries in Apache Lucene, a range is divided recursively * into multiple intervals for searching: The center of the range is searched only with * the lowest possible precision in the trie, while the boundaries are matched * more exactly. This reduces the number of terms dramatically. * * <p>This class generates terms to achieve this: First the numerical integer values need to * be converted to bytes. For that integer values (32 bit or 64 bit) are made unsigned * and the bits are converted to ASCII chars with each 7 bit. The resulting byte[] is * sortable like the original integer value (even using UTF-8 sort order). Each value is also * prefixed (in the first char) by the <code>shift</code> value (number of bits removed) used * during encoding. * * <p>To also index floating point numbers, this class supplies two methods to convert them * to integer values by changing their bit layout: {@link #doubleToSortableLong}, * {@link #floatToSortableInt}. You will have no precision loss by * converting floating point numbers to integers and back (only that the integer form * is not usable). Other data types like dates can easily converted to longs or ints (e.g. * date to long: {@link java.util.Date#getTime}). * * <p>For easy usage, the trie algorithm is implemented for indexing inside * {@link NumericTokenStream} that can index <code>int</code>, <code>long</code>, * <code>float</code>, and <code>double</code>. For querying, * {@link NumericRangeQuery} and {@link NumericRangeFilter} implement the query part * for the same data types. * * <p>This class can also be used, to generate lexicographically sortable (according to * {@link BytesRef#getUTF8SortedAsUTF16Comparator()}) representations of numeric data * types for other usages (e.g. sorting). * * @lucene.internal * @since 2.9, API changed non backwards-compliant in 4.0 */ public final class NumericUtils { private NumericUtils() {} // no instance! /** * The default precision step used by {@link NumericField}, {@link NumericTokenStream}, * {@link NumericRangeQuery}, and {@link NumericRangeFilter} as default */ public static final int PRECISION_STEP_DEFAULT = 4; /** * Longs are stored at lower precision by shifting off lower bits. The shift count is * stored as <code>SHIFT_START_LONG+shift</code> in the first byte */ public static final byte SHIFT_START_LONG = 0x20; /** * The maximum term length (used for <code>byte[]</code> buffer size) * for encoding <code>long</code> values. * @see #longToPrefixCoded(long,int,BytesRef) */ public static final int BUF_SIZE_LONG = 63/7 + 2; /** * Integers are stored at lower precision by shifting off lower bits. The shift count is * stored as <code>SHIFT_START_INT+shift</code> in the first byte */ public static final byte SHIFT_START_INT = 0x60; /** * The maximum term length (used for <code>byte[]</code> buffer size) * for encoding <code>int</code> values. * @see #intToPrefixCoded(int,int,BytesRef) */ public static final int BUF_SIZE_INT = 31/7 + 2; /** * Returns prefix coded bits after reducing the precision by <code>shift</code> bits. * This is method is used by {@link NumericTokenStream}. * After encoding, {@code bytes.offset} will always be 0. * @param val the numeric value * @param shift how many bits to strip from the right * @param bytes will contain the encoded value * @return the hash code for indexing (TermsHash) */ public static int longToPrefixCoded(final long val, final int shift, final BytesRef bytes) { if (shift>63 || shift<0) throw new IllegalArgumentException("Illegal shift value, must be 0..63"); int hash, nChars = (63-shift)/7 + 1; bytes.offset = 0; bytes.length = nChars+1; if (bytes.bytes.length < bytes.length) { bytes.grow(NumericUtils.BUF_SIZE_LONG); } bytes.bytes[0] = (byte) (hash = (SHIFT_START_LONG + shift)); long sortableBits = val ^ 0x8000000000000000L; sortableBits >>>= shift; while (nChars > 0) { // Store 7 bits per byte for compatibility // with UTF-8 encoding of terms bytes.bytes[nChars--] = (byte)(sortableBits & 0x7f); sortableBits >>>= 7; } // calculate hash for (int i = 1; i < bytes.length; i++) { hash = 31*hash + bytes.bytes[i]; } return hash; } /* * Returns prefix coded bits after reducing the precision by <code>shift</code> bits. * This is method is used by {@link LongRangeBuilder}. * @param val the numeric value * @param shift how many bits to strip from the right * @deprecated This method is no longer needed! * @Deprecated public static String longToPrefixCoded(final long val, final int shift) { final BytesRef buffer = new BytesRef(BUF_SIZE_LONG); longToPrefixCoded(val, shift, buffer); return buffer.utf8ToString(); }*/ /* * This is a convenience method, that returns prefix coded bits of a long without * reducing the precision. It can be used to store the full precision value as a * stored field in index. * <p>To decode, use {@link #prefixCodedToLong}. * @deprecated This method is no longer needed! * @Deprecated public static String longToPrefixCoded(final long val) { return longToPrefixCoded(val, 0); }*/ /** * Returns prefix coded bits after reducing the precision by <code>shift</code> bits. * This is method is used by {@link NumericTokenStream}. * After encoding, {@code bytes.offset} will always be 0. * @param val the numeric value * @param shift how many bits to strip from the right * @param bytes will contain the encoded value * @return the hash code for indexing (TermsHash) */ public static int intToPrefixCoded(final int val, final int shift, final BytesRef bytes) { if (shift>31 || shift<0) throw new IllegalArgumentException("Illegal shift value, must be 0..31"); int hash, nChars = (31-shift)/7 + 1; bytes.offset = 0; bytes.length = nChars+1; if (bytes.bytes.length < bytes.length) { bytes.grow(NumericUtils.BUF_SIZE_INT); } bytes.bytes[0] = (byte) (hash = (SHIFT_START_INT + shift)); int sortableBits = val ^ 0x80000000; sortableBits >>>= shift; while (nChars > 0) { // Store 7 bits per byte for compatibility // with UTF-8 encoding of terms bytes.bytes[nChars--] = (byte)(sortableBits & 0x7f); sortableBits >>>= 7; } // calculate hash for (int i = 1; i < bytes.length; i++) { hash = 31*hash + bytes.bytes[i]; } return hash; } /* * Returns prefix coded bits after reducing the precision by <code>shift</code> bits. * This is method is used by {@link IntRangeBuilder}. * @param val the numeric value * @param shift how many bits to strip from the right * @deprecated This method is no longer needed! * @Deprecated public static String intToPrefixCoded(final int val, final int shift) { final BytesRef buffer = new BytesRef(BUF_SIZE_INT); intToPrefixCoded(val, shift, buffer); return buffer.utf8ToString(); }*/ /* * This is a convenience method, that returns prefix coded bits of an int without * reducing the precision. It can be used to store the full precision value as a * stored field in index. * <p>To decode, use {@link #prefixCodedToInt}. * @deprecated This method is no longer needed! * @Deprecated public static String intToPrefixCoded(final int val) { return intToPrefixCoded(val, 0); }*/ /* * Returns a long from prefixCoded characters. * Rightmost bits will be zero for lower precision codes. * This method can be used to decode e.g. a stored field. * @throws NumberFormatException if the supplied string is * not correctly prefix encoded. * @see #longToPrefixCoded(long) * @deprecated This method is no longer needed! * @Deprecated public static long prefixCodedToLong(final String prefixCoded) { return prefixCodedToLong(new BytesRef(prefixCoded)); }*/ /** * Returns the shift value from a prefix encoded {@code long}. * @throws NumberFormatException if the supplied {@link BytesRef} is * not correctly prefix encoded. */ public static int getPrefixCodedLongShift(final BytesRef val) { final int shift = val.bytes[val.offset] - SHIFT_START_LONG; if (shift > 63 || shift < 0) throw new NumberFormatException("Invalid shift value in prefixCoded bytes (is encoded value really an INT?)"); return shift; } /** * Returns the shift value from a prefix encoded {@code int}. * @throws NumberFormatException if the supplied {@link BytesRef} is * not correctly prefix encoded. */ public static int getPrefixCodedIntShift(final BytesRef val) { final int shift = val.bytes[val.offset] - SHIFT_START_INT; if (shift > 31 || shift < 0) throw new NumberFormatException("Invalid shift value in prefixCoded bytes (is encoded value really an INT?)"); return shift; } /** * Returns a long from prefixCoded bytes. * Rightmost bits will be zero for lower precision codes. * This method can be used to decode a term's value. * @throws NumberFormatException if the supplied {@link BytesRef} is * not correctly prefix encoded. * @see #longToPrefixCoded(long,int,BytesRef) */ public static long prefixCodedToLong(final BytesRef val) { long sortableBits = 0L; for (int i=val.offset+1, limit=val.offset+val.length; i<limit; i++) { sortableBits <<= 7; final byte b = val.bytes[i]; if (b < 0) { throw new NumberFormatException( "Invalid prefixCoded numerical value representation (byte "+ Integer.toHexString(b&0xff)+" at position "+(i-val.offset)+" is invalid)" ); } sortableBits |= b; } return (sortableBits << getPrefixCodedLongShift(val)) ^ 0x8000000000000000L; } /* * Returns an int from prefixCoded characters. * Rightmost bits will be zero for lower precision codes. * This method can be used to decode a term's value. * @throws NumberFormatException if the supplied string is * not correctly prefix encoded. * @see #intToPrefixCoded(int) * @deprecated This method is no longer needed! * @Deprecated public static int prefixCodedToInt(final String prefixCoded) { return prefixCodedToInt(new BytesRef(prefixCoded)); }*/ /* * Returns an int from prefixCoded bytes. * Rightmost bits will be zero for lower precision codes. * This method can be used to decode a term's value. * @throws NumberFormatException if the supplied {@link BytesRef} is * not correctly prefix encoded. * @see #intToPrefixCoded(int,int,BytesRef) */ public static int prefixCodedToInt(final BytesRef val) { int sortableBits = 0; for (int i=val.offset+1, limit=val.offset+val.length; i<limit; i++) { sortableBits <<= 7; final byte b = val.bytes[i]; if (b < 0) { throw new NumberFormatException( "Invalid prefixCoded numerical value representation (byte "+ Integer.toHexString(b&0xff)+" at position "+(i-val.offset)+" is invalid)" ); } sortableBits |= b; } return (sortableBits << getPrefixCodedIntShift(val)) ^ 0x80000000; } /** * Converts a <code>double</code> value to a sortable signed <code>long</code>. * The value is converted by getting their IEEE 754 floating-point "double format" * bit layout and then some bits are swapped, to be able to compare the result as long. * By this the precision is not reduced, but the value can easily used as a long. * @see #sortableLongToDouble */ public static long doubleToSortableLong(double val) { long f = Double.doubleToRawLongBits(val); if (f<0) f ^= 0x7fffffffffffffffL; return f; } /* * Convenience method: this just returns: * longToPrefixCoded(doubleToSortableLong(val)) * @deprecated This method is no longer needed! * @Deprecated public static String doubleToPrefixCoded(double val) { return longToPrefixCoded(doubleToSortableLong(val)); }*/ /** * Converts a sortable <code>long</code> back to a <code>double</code>. * @see #doubleToSortableLong */ public static double sortableLongToDouble(long val) { if (val<0) val ^= 0x7fffffffffffffffL; return Double.longBitsToDouble(val); } /* * Convenience method: this just returns: * sortableLongToDouble(prefixCodedToLong(val)) * @deprecated This method is no longer needed! * @Deprecated public static double prefixCodedToDouble(String val) { return sortableLongToDouble(prefixCodedToLong(val)); }*/ /** * Converts a <code>float</code> value to a sortable signed <code>int</code>. * The value is converted by getting their IEEE 754 floating-point "float format" * bit layout and then some bits are swapped, to be able to compare the result as int. * By this the precision is not reduced, but the value can easily used as an int. * @see #sortableIntToFloat */ public static int floatToSortableInt(float val) { int f = Float.floatToRawIntBits(val); if (f<0) f ^= 0x7fffffff; return f; } /* * Convenience method: this just returns: * intToPrefixCoded(floatToSortableInt(val)) * @deprecated This method is no longer needed! * @Deprecated public static String floatToPrefixCoded(float val) { return intToPrefixCoded(floatToSortableInt(val)); }*/ /** * Converts a sortable <code>int</code> back to a <code>float</code>. * @see #floatToSortableInt */ public static float sortableIntToFloat(int val) { if (val<0) val ^= 0x7fffffff; return Float.intBitsToFloat(val); } /* * Convenience method: this just returns: * sortableIntToFloat(prefixCodedToInt(val)) * @deprecated This method is no longer needed! * @Deprecated public static float prefixCodedToFloat(String val) { return sortableIntToFloat(prefixCodedToInt(val)); }*/ /** * Splits a long range recursively. * You may implement a builder that adds clauses to a * {@link org.apache.lucene.search.BooleanQuery} for each call to its * {@link LongRangeBuilder#addRange(BytesRef,BytesRef)} * method. * <p>This method is used by {@link NumericRangeQuery}. */ public static void splitLongRange(final LongRangeBuilder builder, final int precisionStep, final long minBound, final long maxBound ) { splitRange(builder, 64, precisionStep, minBound, maxBound); } /** * Splits an int range recursively. * You may implement a builder that adds clauses to a * {@link org.apache.lucene.search.BooleanQuery} for each call to its * {@link IntRangeBuilder#addRange(BytesRef,BytesRef)} * method. * <p>This method is used by {@link NumericRangeQuery}. */ public static void splitIntRange(final IntRangeBuilder builder, final int precisionStep, final int minBound, final int maxBound ) { splitRange(builder, 32, precisionStep, minBound, maxBound); } /** This helper does the splitting for both 32 and 64 bit. */ private static void splitRange( final Object builder, final int valSize, final int precisionStep, long minBound, long maxBound ) { if (precisionStep < 1) throw new IllegalArgumentException("precisionStep must be >=1"); if (minBound > maxBound) return; for (int shift=0; ; shift += precisionStep) { // calculate new bounds for inner precision final long diff = 1L << (shift+precisionStep), mask = ((1L<<precisionStep) - 1L) << shift; final boolean hasLower = (minBound & mask) != 0L, hasUpper = (maxBound & mask) != mask; final long nextMinBound = (hasLower ? (minBound + diff) : minBound) & ~mask, nextMaxBound = (hasUpper ? (maxBound - diff) : maxBound) & ~mask; final boolean lowerWrapped = nextMinBound < minBound, upperWrapped = nextMaxBound > maxBound; if (shift+precisionStep>=valSize || nextMinBound>nextMaxBound || lowerWrapped || upperWrapped) { // We are in the lowest precision or the next precision is not available. addRange(builder, valSize, minBound, maxBound, shift); // exit the split recursion loop break; } if (hasLower) addRange(builder, valSize, minBound, minBound | mask, shift); if (hasUpper) addRange(builder, valSize, maxBound & ~mask, maxBound, shift); // recurse to next precision minBound = nextMinBound; maxBound = nextMaxBound; } } /** Helper that delegates to correct range builder */ private static void addRange( final Object builder, final int valSize, long minBound, long maxBound, final int shift ) { // for the max bound set all lower bits (that were shifted away): // this is important for testing or other usages of the splitted range // (e.g. to reconstruct the full range). The prefixEncoding will remove // the bits anyway, so they do not hurt! maxBound |= (1L << shift) - 1L; // delegate to correct range builder switch(valSize) { case 64: ((LongRangeBuilder)builder).addRange(minBound, maxBound, shift); break; case 32: ((IntRangeBuilder)builder).addRange((int)minBound, (int)maxBound, shift); break; default: // Should not happen! throw new IllegalArgumentException("valSize must be 32 or 64."); } } /** * Callback for {@link #splitLongRange}. * You need to overwrite only one of the methods. * @lucene.internal * @since 2.9, API changed non backwards-compliant in 4.0 */ public static abstract class LongRangeBuilder { /** * Overwrite this method, if you like to receive the already prefix encoded range bounds. * You can directly build classical (inclusive) range queries from them. */ public void addRange(BytesRef minPrefixCoded, BytesRef maxPrefixCoded) { throw new UnsupportedOperationException(); } /** * Overwrite this method, if you like to receive the raw long range bounds. * You can use this for e.g. debugging purposes (print out range bounds). */ public void addRange(final long min, final long max, final int shift) { final BytesRef minBytes = new BytesRef(BUF_SIZE_LONG), maxBytes = new BytesRef(BUF_SIZE_LONG); longToPrefixCoded(min, shift, minBytes); longToPrefixCoded(max, shift, maxBytes); addRange(minBytes, maxBytes); } } /** * Callback for {@link #splitIntRange}. * You need to overwrite only one of the methods. * @lucene.internal * @since 2.9, API changed non backwards-compliant in 4.0 */ public static abstract class IntRangeBuilder { /** * Overwrite this method, if you like to receive the already prefix encoded range bounds. * You can directly build classical range (inclusive) queries from them. */ public void addRange(BytesRef minPrefixCoded, BytesRef maxPrefixCoded) { throw new UnsupportedOperationException(); } /** * Overwrite this method, if you like to receive the raw int range bounds. * You can use this for e.g. debugging purposes (print out range bounds). */ public void addRange(final int min, final int max, final int shift) { final BytesRef minBytes = new BytesRef(BUF_SIZE_INT), maxBytes = new BytesRef(BUF_SIZE_INT); intToPrefixCoded(min, shift, minBytes); intToPrefixCoded(max, shift, maxBytes); addRange(minBytes, maxBytes); } } }