/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.test.integration.applications; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.List; import org.junit.runners.Parameterized.Parameters; import org.apache.sysml.runtime.matrix.data.MatrixValue.CellIndex; import org.apache.sysml.test.integration.AutomatedTestBase; import org.apache.sysml.test.utils.TestUtils; public abstract class LinearRegressionTest extends AutomatedTestBase { protected final static String TEST_DIR = "applications/linear_regression/"; protected final static String TEST_NAME = "LinearRegression"; protected String TEST_CLASS_DIR = TEST_DIR + LinearRegressionTest.class.getSimpleName() + "/"; protected int numRecords, numFeatures; protected double sparsity; public LinearRegressionTest(int rows, int cols, double sp) { numRecords = rows; numFeatures = cols; sparsity = sp; } @Parameters public static Collection<Object[]> data() { Object[][] data = new Object[][] { //sparse tests (sparsity=0.01) {100, 50, 0.01}, {1000, 500, 0.01}, {10000, 750, 0.01}, {100000, 1000, 0.01}, //dense tests (sparsity=0.7) {100, 50, 0.7}, {1000, 500, 0.7}, {10000, 750, 0.7} }; return Arrays.asList(data); } @Override public void setUp() { addTestConfiguration(TEST_CLASS_DIR, TEST_NAME); } protected void testLinearRegression(ScriptType scriptType) { System.out.println("------------ BEGIN " + TEST_NAME + " " + scriptType + " TEST WITH {" + numRecords + ", " + numFeatures + ", " + sparsity + "} ------------"); this.scriptType = scriptType; int rows = numRecords; int cols = numFeatures; getAndLoadTestConfiguration(TEST_NAME); List<String> proArgs = new ArrayList<String>(); if (scriptType == ScriptType.PYDML) { proArgs.add("-python"); } proArgs.add("-stats"); proArgs.add("-args"); proArgs.add(input("v")); proArgs.add(input("y")); proArgs.add(Double.toString(Math.pow(10, -8))); proArgs.add(output("w")); programArgs = proArgs.toArray(new String[proArgs.size()]); fullDMLScriptName = getScript(); rCmd = getRCmd(inputDir(), Double.toString(Math.pow(10, -8)), expectedDir()); double[][] v = getRandomMatrix(rows, cols, 0, 1, sparsity, -1); double[][] y = getRandomMatrix(rows, 1, 1, 10, 1, -1); writeInputMatrixWithMTD("v", v, true); writeInputMatrixWithMTD("y", y, true); /* * Expected number of jobs: * Rand - 1 job * Computation before while loop - 4 jobs * While loop iteration - 10 jobs * Final output write - 1 job */ int expectedNumberOfJobs = 16; runTest(true, EXCEPTION_NOT_EXPECTED, null, expectedNumberOfJobs); runRScript(true); HashMap<CellIndex, Double> wR = readRMatrixFromFS("w"); HashMap<CellIndex, Double> wSYSTEMML= readDMLMatrixFromHDFS("w"); TestUtils.compareMatrices(wR, wSYSTEMML, Math.pow(10, -10), "wR", "wSYSTEMML"); } }