/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.parser; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import org.apache.sysml.parser.LanguageException.LanguageErrorCodes; import org.apache.sysml.runtime.util.ConvolutionUtils; public class BuiltinFunctionExpression extends DataIdentifier { protected Expression[] _args = null; private BuiltinFunctionOp _opcode; public BuiltinFunctionExpression(BuiltinFunctionOp bifop, ArrayList<ParameterExpression> args, String fname, int blp, int bcp, int elp, int ecp) { _kind = Kind.BuiltinFunctionOp; _opcode = bifop; this.setAllPositions(fname, blp, bcp, elp, ecp); args = expandConvolutionArguments(args); _args = new Expression[args.size()]; for(int i=0; i < args.size(); i++) { _args[i] = args.get(i).getExpr(); } } public BuiltinFunctionExpression(BuiltinFunctionOp bifop, Expression[] args, String fname, int blp, int bcp, int elp, int ecp) { _kind = Kind.BuiltinFunctionOp; _opcode = bifop; _args = new Expression[args.length]; for(int i=0; i < args.length; i++) { _args[i] = args[i]; } this.setAllPositions(fname, blp, bcp, elp, ecp); } public Expression rewriteExpression(String prefix) throws LanguageException { Expression[] newArgs = new Expression[_args.length]; for(int i=0; i < _args.length; i++) { newArgs[i] = _args[i].rewriteExpression(prefix); } BuiltinFunctionExpression retVal = new BuiltinFunctionExpression(this._opcode, newArgs, this.getFilename(), this.getBeginLine(), this.getBeginColumn(), this.getEndLine(), this.getEndColumn()); return retVal; } public BuiltinFunctionOp getOpCode() { return _opcode; } public Expression getFirstExpr() { return (_args.length >= 1 ? _args[0] : null); } public Expression getSecondExpr() { return (_args.length >= 2 ? _args[1] : null); } public Expression getThirdExpr() { return (_args.length >= 3 ? _args[2] : null); } public Expression[] getAllExpr(){ return _args; } @Override public void validateExpression(MultiAssignmentStatement stmt, HashMap<String, DataIdentifier> ids, HashMap<String, ConstIdentifier> constVars, boolean conditional) throws LanguageException { if (this.getFirstExpr() instanceof FunctionCallIdentifier){ raiseValidateError("UDF function call not supported as parameter to built-in function call", false); } this.getFirstExpr().validateExpression(ids, constVars, conditional); if (getSecondExpr() != null){ if (this.getSecondExpr() instanceof FunctionCallIdentifier){ raiseValidateError("UDF function call not supported as parameter to built-in function call", false); } getSecondExpr().validateExpression(ids, constVars, conditional); } if (getThirdExpr() != null) { if (this.getThirdExpr() instanceof FunctionCallIdentifier){ raiseValidateError("UDF function call not supported as parameter to built-in function call", false); } getThirdExpr().validateExpression(ids, constVars, conditional); } _outputs = new Identifier[stmt.getTargetList().size()]; int count = 0; for (DataIdentifier outParam: stmt.getTargetList()){ DataIdentifier tmp = new DataIdentifier(outParam); tmp.setAllPositions(this.getFilename(), this.getBeginLine(), this.getBeginColumn(), this.getEndLine(), this.getEndColumn()); _outputs[count++] = tmp; } switch (_opcode) { case QR: checkNumParameters(1); checkMatrixParam(getFirstExpr()); // setup output properties DataIdentifier qrOut1 = (DataIdentifier) getOutputs()[0]; DataIdentifier qrOut2 = (DataIdentifier) getOutputs()[1]; long rows = getFirstExpr().getOutput().getDim1(); long cols = getFirstExpr().getOutput().getDim2(); // Output1 - Q qrOut1.setDataType(DataType.MATRIX); qrOut1.setValueType(ValueType.DOUBLE); qrOut1.setDimensions(rows, cols); qrOut1.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); // Output2 - R qrOut2.setDataType(DataType.MATRIX); qrOut2.setValueType(ValueType.DOUBLE); qrOut2.setDimensions(rows, cols); qrOut2.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); break; case LU: checkNumParameters(1); checkMatrixParam(getFirstExpr()); // setup output properties DataIdentifier luOut1 = (DataIdentifier) getOutputs()[0]; DataIdentifier luOut2 = (DataIdentifier) getOutputs()[1]; DataIdentifier luOut3 = (DataIdentifier) getOutputs()[2]; long inrows = getFirstExpr().getOutput().getDim1(); long incols = getFirstExpr().getOutput().getDim2(); if ( inrows != incols ) { raiseValidateError("LU Decomposition can only be done on a square matrix. Input matrix is rectangular (rows=" + inrows + ", cols="+incols+")", conditional); } // Output1 - P luOut1.setDataType(DataType.MATRIX); luOut1.setValueType(ValueType.DOUBLE); luOut1.setDimensions(inrows, inrows); luOut1.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); // Output2 - L luOut2.setDataType(DataType.MATRIX); luOut2.setValueType(ValueType.DOUBLE); luOut2.setDimensions(inrows, inrows); luOut2.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); // Output3 - U luOut3.setDataType(DataType.MATRIX); luOut3.setValueType(ValueType.DOUBLE); luOut3.setDimensions(inrows, inrows); luOut3.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); break; case EIGEN: checkNumParameters(1); checkMatrixParam(getFirstExpr()); // setup output properties DataIdentifier eigenOut1 = (DataIdentifier) getOutputs()[0]; DataIdentifier eigenOut2 = (DataIdentifier) getOutputs()[1]; if ( getFirstExpr().getOutput().getDim1() != getFirstExpr().getOutput().getDim2() ) { raiseValidateError("Eigen Decomposition can only be done on a square matrix. Input matrix is rectangular (rows=" + getFirstExpr().getOutput().getDim1() + ", cols="+ getFirstExpr().getOutput().getDim2() +")", conditional); } // Output1 - Eigen Values eigenOut1.setDataType(DataType.MATRIX); eigenOut1.setValueType(ValueType.DOUBLE); eigenOut1.setDimensions(getFirstExpr().getOutput().getDim1(), 1); eigenOut1.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); // Output2 - Eigen Vectors eigenOut2.setDataType(DataType.MATRIX); eigenOut2.setValueType(ValueType.DOUBLE); eigenOut2.setDimensions(getFirstExpr().getOutput().getDim1(), getFirstExpr().getOutput().getDim2()); eigenOut2.setBlockDimensions(getFirstExpr().getOutput().getRowsInBlock(), getFirstExpr().getOutput().getColumnsInBlock()); break; default: //always unconditional raiseValidateError("Unknown Builtin Function opcode: " + _opcode, false); } } private ArrayList<ParameterExpression> orderConvolutionParams(ArrayList<ParameterExpression> paramExpression, int skip) throws LanguageException { ArrayList<ParameterExpression> newParams = new ArrayList<ParameterExpression>(); for(int i = 0; i < skip; i++) newParams.add(paramExpression.get(i)); String [] orderedParams = { "stride1", "stride2", "padding1", "padding2", "input_shape1", "input_shape2", "input_shape3", "input_shape4", "filter_shape1", "filter_shape2", "filter_shape3", "filter_shape4" }; for(int i = 0; i < orderedParams.length; i++) { boolean found = false; for(ParameterExpression param : paramExpression) { if(param.getName() != null && param.getName().equals(orderedParams[i])) { found = true; newParams.add(param); } } if(!found) { throw new LanguageException("Incorrect parameters. Expected " + orderedParams[i] + " to be expanded."); } } return newParams; } private ArrayList<ParameterExpression> replaceListParams(ArrayList<ParameterExpression> paramExpression, String inputVarName, String outputVarName, int startIndex) throws LanguageException { ArrayList<ParameterExpression> newParamExpression = new ArrayList<ParameterExpression>(); int i = startIndex; int j = 1; // Assumption: sequential ordering pool_size1, pool_size2 for (ParameterExpression expr : paramExpression) { if(expr.getName() != null && expr.getName().equals(inputVarName + j)) { newParamExpression.add(new ParameterExpression(outputVarName + i, expr.getExpr())); i++; j++; } else { newParamExpression.add(expr); } } return newParamExpression; } private ArrayList<ParameterExpression> expandListParams(ArrayList<ParameterExpression> paramExpression, HashSet<String> paramsToExpand) throws LanguageException { ArrayList<ParameterExpression> newParamExpressions = new ArrayList<ParameterExpression>(); for(ParameterExpression expr : paramExpression) { if(paramsToExpand.contains(expr.getName())) { if(expr.getExpr() instanceof ExpressionList) { int i = 1; for(Expression e : ((ExpressionList)expr.getExpr()).getValue()) { newParamExpressions.add(new ParameterExpression(expr.getName() + i, e)); i++; } } } else if(expr.getExpr() instanceof ExpressionList) { throw new LanguageException("The parameter " + expr.getName() + " cannot be list or is not supported for the given function"); } else { newParamExpressions.add(expr); } } return newParamExpressions; } private ArrayList<ParameterExpression> expandConvolutionArguments(ArrayList<ParameterExpression> paramExpression) { try { if(_opcode == BuiltinFunctionOp.CONV2D || _opcode == BuiltinFunctionOp.CONV2D_BACKWARD_FILTER || _opcode == BuiltinFunctionOp.CONV2D_BACKWARD_DATA) { HashSet<String> expand = new HashSet<String>(); expand.add("input_shape"); expand.add("filter_shape"); expand.add("stride"); expand.add("padding"); paramExpression = expandListParams(paramExpression, expand); paramExpression = orderConvolutionParams(paramExpression, 2); } else if(_opcode == BuiltinFunctionOp.MAX_POOL || _opcode == BuiltinFunctionOp.MAX_POOL_BACKWARD) { HashSet<String> expand = new HashSet<String>(); expand.add("input_shape"); expand.add("pool_size"); expand.add("stride"); expand.add("padding"); paramExpression = expandListParams(paramExpression, expand); paramExpression.add(new ParameterExpression("filter_shape1", new IntIdentifier(1, getFilename(), getBeginLine(), getBeginColumn(), getEndLine(), getEndColumn()))); paramExpression.add(new ParameterExpression("filter_shape2", new IntIdentifier(1, getFilename(), getBeginLine(), getBeginColumn(), getEndLine(), getEndColumn()))); paramExpression = replaceListParams(paramExpression, "pool_size", "filter_shape", 3); if(_opcode == BuiltinFunctionOp.MAX_POOL_BACKWARD) paramExpression = orderConvolutionParams(paramExpression, 2); else paramExpression = orderConvolutionParams(paramExpression, 1); } } catch(LanguageException e) { throw new RuntimeException(e); } return paramExpression; } /** * Validate parse tree : Process BuiltinFunction Expression in an assignment * statement * * @throws LanguageException if LanguageException occurs */ @Override public void validateExpression(HashMap<String, DataIdentifier> ids, HashMap<String, ConstIdentifier> constVars, boolean conditional) throws LanguageException { for(int i=0; i < _args.length; i++ ) { if (_args[i] instanceof FunctionCallIdentifier){ raiseValidateError("UDF function call not supported as parameter to built-in function call", false); } _args[i].validateExpression(ids, constVars, conditional); } // checkIdentifierParams(); String outputName = getTempName(); DataIdentifier output = new DataIdentifier(outputName); output.setAllPositions(this.getFilename(), this.getBeginLine(), this.getBeginColumn(), this.getEndLine(), this.getEndColumn()); Identifier id = this.getFirstExpr().getOutput(); output.setProperties(this.getFirstExpr().getOutput()); output.setNnz(-1); //conservatively, cannot use input nnz! this.setOutput(output); switch (this.getOpCode()) { case COLSUM: case COLMAX: case COLMIN: case COLMEAN: case COLSD: case COLVAR: // colSums(X); checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(1, id.getDim2()); output.setBlockDimensions (id.getRowsInBlock(), id.getColumnsInBlock()); output.setValueType(id.getValueType()); break; case ROWSUM: case ROWMAX: case ROWINDEXMAX: case ROWMIN: case ROWINDEXMIN: case ROWMEAN: case ROWSD: case ROWVAR: //rowSums(X); checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(id.getDim1(), 1); output.setBlockDimensions (id.getRowsInBlock(), id.getColumnsInBlock()); output.setValueType(id.getValueType()); break; case SUM: case PROD: case TRACE: case SD: case VAR: // sum(X); checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.SCALAR); output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(id.getValueType()); break; case MEAN: //checkNumParameters(2, false); // mean(Y) or mean(Y,W) if (getSecondExpr() != null) { checkNumParameters (2); } else { checkNumParameters (1); } checkMatrixParam(getFirstExpr()); if ( getSecondExpr() != null ) { // x = mean(Y,W); checkMatchingDimensions(getFirstExpr(), getSecondExpr()); } output.setDataType(DataType.SCALAR); output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(id.getValueType()); break; case MIN: case MAX: //min(X), min(X,s), min(s,X), min(s,r), min(X,Y) //unary aggregate if (getSecondExpr() == null) { checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType( DataType.SCALAR ); output.setDimensions(0, 0); output.setBlockDimensions (0, 0); } //binary operation else { checkNumParameters(2); DataType dt1 = getFirstExpr().getOutput().getDataType(); DataType dt2 = getSecondExpr().getOutput().getDataType(); DataType dtOut = (dt1==DataType.MATRIX || dt2==DataType.MATRIX)? DataType.MATRIX : DataType.SCALAR; if( dt1==DataType.MATRIX && dt2==DataType.MATRIX ) checkMatchingDimensions(getFirstExpr(), getSecondExpr(), true); //determine output dimensions long[] dims = getBinaryMatrixCharacteristics(getFirstExpr(), getSecondExpr()); output.setDataType( dtOut ); output.setDimensions(dims[0], dims[1]); output.setBlockDimensions (dims[2], dims[3]); } output.setValueType(id.getValueType()); break; case CUMSUM: case CUMPROD: case CUMMIN: case CUMMAX: // cumsum(X); checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(id.getDim1(), id.getDim2()); output.setBlockDimensions (id.getRowsInBlock(), id.getColumnsInBlock()); output.setValueType(id.getValueType()); break; case CAST_AS_SCALAR: checkNumParameters(1); checkMatrixFrameParam(getFirstExpr()); if (( getFirstExpr().getOutput().getDim1() != -1 && getFirstExpr().getOutput().getDim1() !=1) || ( getFirstExpr().getOutput().getDim2() != -1 && getFirstExpr().getOutput().getDim2() !=1)) { raiseValidateError("dimension mismatch while casting matrix to scalar: dim1: " + getFirstExpr().getOutput().getDim1() + " dim2 " + getFirstExpr().getOutput().getDim2(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); } output.setDataType(DataType.SCALAR); output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(id.getValueType()); break; case CAST_AS_MATRIX: checkNumParameters(1); checkScalarFrameParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(id.getDim1(), id.getDim2()); if( getFirstExpr().getOutput().getDataType()==DataType.SCALAR ) output.setDimensions(1, 1); //correction scalars output.setBlockDimensions(id.getRowsInBlock(), id.getColumnsInBlock()); output.setValueType(id.getValueType()); break; case CAST_AS_FRAME: checkNumParameters(1); checkMatrixScalarParam(getFirstExpr()); output.setDataType(DataType.FRAME); output.setDimensions(id.getDim1(), id.getDim2()); if( getFirstExpr().getOutput().getDataType()==DataType.SCALAR ) output.setDimensions(1, 1); //correction scalars output.setBlockDimensions(id.getRowsInBlock(), id.getColumnsInBlock()); output.setValueType(id.getValueType()); break; case CAST_AS_DOUBLE: checkNumParameters(1); checkScalarParam(getFirstExpr()); output.setDataType(DataType.SCALAR); //output.setDataType(id.getDataType()); //TODO whenever we support multiple matrix value types, currently noop. output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(ValueType.DOUBLE); break; case CAST_AS_INT: checkNumParameters(1); checkScalarParam(getFirstExpr()); output.setDataType(DataType.SCALAR); //output.setDataType(id.getDataType()); //TODO whenever we support multiple matrix value types, currently noop. output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(ValueType.INT); break; case CAST_AS_BOOLEAN: checkNumParameters(1); checkScalarParam(getFirstExpr()); output.setDataType(DataType.SCALAR); //output.setDataType(id.getDataType()); //TODO whenever we support multiple matrix value types, currently noop. output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(ValueType.BOOLEAN); break; case CBIND: case RBIND: checkNumParameters(2); //scalar string append (string concatenation with \n) if( getFirstExpr().getOutput().getDataType()==DataType.SCALAR ) { checkScalarParam(getFirstExpr()); checkScalarParam(getSecondExpr()); checkValueTypeParam(getFirstExpr(), ValueType.STRING); checkValueTypeParam(getSecondExpr(), ValueType.STRING); } //matrix append (rbind/cbind) else { checkMatrixFrameParam(getFirstExpr()); checkMatrixFrameParam(getSecondExpr()); } output.setDataType(id.getDataType()); output.setValueType(id.getValueType()); // set output dimensions and validate consistency long appendDim1 = -1, appendDim2 = -1; long m1rlen = getFirstExpr().getOutput().getDim1(); long m1clen = getFirstExpr().getOutput().getDim2(); long m2rlen = getSecondExpr().getOutput().getDim1(); long m2clen = getSecondExpr().getOutput().getDim2(); if( getOpCode() == BuiltinFunctionOp.CBIND ) { if (m1rlen > 0 && m2rlen > 0 && m1rlen!=m2rlen) { raiseValidateError("inputs to cbind must have same number of rows: input 1 rows: " + m1rlen+", input 2 rows: "+m2rlen, conditional, LanguageErrorCodes.INVALID_PARAMETERS); } appendDim1 = (m1rlen>0) ? m1rlen : m2rlen; appendDim2 = (m1clen>0 && m2clen>0)? m1clen + m2clen : -1; } else if( getOpCode() == BuiltinFunctionOp.RBIND ) { if (m1clen > 0 && m2clen > 0 && m1clen!=m2clen) { raiseValidateError("inputs to rbind must have same number of columns: input 1 columns: " + m1clen+", input 2 columns: "+m2clen, conditional, LanguageErrorCodes.INVALID_PARAMETERS); } appendDim1 = (m1rlen>0 && m2rlen>0)? m1rlen + m2rlen : -1; appendDim2 = (m1clen>0) ? m1clen : m2clen; } output.setDimensions(appendDim1, appendDim2); output.setBlockDimensions (id.getRowsInBlock(), id.getColumnsInBlock()); break; case PPRED: // TODO: remove this when ppred has been removed from DML raiseValidateError("ppred() has been deprecated. Please use the operator directly.", true); // ppred (X,Y, "<"); ppred (X,y, "<"); ppred (y,X, "<"); checkNumParameters(3); DataType dt1 = getFirstExpr().getOutput().getDataType(); DataType dt2 = getSecondExpr().getOutput().getDataType(); //check input data types if( dt1 == DataType.SCALAR && dt2 == DataType.SCALAR ) { raiseValidateError("ppred() requires at least one matrix input.", conditional, LanguageErrorCodes.INVALID_PARAMETERS); } if( dt1 == DataType.MATRIX ) checkMatrixParam(getFirstExpr()); if( dt2 == DataType.MATRIX ) checkMatrixParam(getSecondExpr()); if( dt1==DataType.MATRIX && dt2==DataType.MATRIX ) //dt1==dt2 checkMatchingDimensions(getFirstExpr(), getSecondExpr(), true); //check operator if (getThirdExpr().getOutput().getDataType() != DataType.SCALAR || getThirdExpr().getOutput().getValueType() != ValueType.STRING) { raiseValidateError("Third argument in ppred() is not an operator ", conditional, LanguageErrorCodes.INVALID_PARAMETERS); } //determine output dimensions long[] dims = getBinaryMatrixCharacteristics(getFirstExpr(), getSecondExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(dims[0], dims[1]); output.setBlockDimensions(dims[2], dims[3]); output.setValueType(id.getValueType()); break; case TRANS: checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(id.getDim2(), id.getDim1()); output.setBlockDimensions (id.getColumnsInBlock(), id.getRowsInBlock()); output.setValueType(id.getValueType()); break; case REV: checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setDimensions(id.getDim1(), id.getDim2()); output.setBlockDimensions (id.getColumnsInBlock(), id.getRowsInBlock()); output.setValueType(id.getValueType()); break; case DIAG: checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); if( id.getDim2() != -1 ) { //type known if ( id.getDim2() == 1 ) { //diag V2M output.setDimensions(id.getDim1(), id.getDim1()); } else { if (id.getDim1() != id.getDim2()) { raiseValidateError("diag can either: (1) create diagonal matrix from (n x 1) matrix, or (2) take diagonal from a square matrix. " + "Error invoking diag on matrix with dimensions (" + id.getDim1() + "," + id.getDim2() + ") in " + this.toString(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); } //diag M2V output.setDimensions(id.getDim1(), 1); } } output.setBlockDimensions (id.getRowsInBlock(), id.getColumnsInBlock()); output.setValueType(id.getValueType()); break; case NROW: case NCOL: case LENGTH: checkNumParameters(1); checkMatrixFrameParam(getFirstExpr()); output.setDataType(DataType.SCALAR); output.setDimensions(0, 0); output.setBlockDimensions (0, 0); output.setValueType(ValueType.INT); break; // Contingency tables case TABLE: /* * Allowed #of arguments: 2,3,4,5 * table(A,B) * table(A,B,W) * table(A,B,1) * table(A,B,dim1,dim2) * table(A,B,W,dim1,dim2) * table(A,B,1,dim1,dim2) */ // Check for validity of input arguments, and setup output dimensions // First input: is always of type MATRIX checkMatrixParam(getFirstExpr()); if ( getSecondExpr() == null ) raiseValidateError("Invalid number of arguments to table(): " + this.toString(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); // Second input: can be MATRIX or SCALAR // cases: table(A,B) or table(A,1) if ( getSecondExpr().getOutput().getDataType() == DataType.MATRIX) checkMatchingDimensions(getFirstExpr(),getSecondExpr()); long outputDim1=-1, outputDim2=-1; switch(_args.length) { case 2: // nothing to do break; case 3: // case - table w/ weights // - weights specified as a matrix: table(A,B,W) or table(A,1,W) // - weights specified as a scalar: table(A,B,1) or table(A,1,1) if ( getThirdExpr().getOutput().getDataType() == DataType.MATRIX) checkMatchingDimensions(getFirstExpr(),getThirdExpr()); break; case 4: // case - table w/ output dimensions: table(A,B,dim1,dim2) or table(A,1,dim1,dim2) // third and fourth arguments must be scalars if ( getThirdExpr().getOutput().getDataType() != DataType.SCALAR || _args[3].getOutput().getDataType() != DataType.SCALAR ) { raiseValidateError("Invalid argument types to table(): output dimensions must be of type scalar: " + this.toString(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); } else { // constant propagation if( getThirdExpr() instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)getThirdExpr()).getName()) ) _args[2] = constVars.get(((DataIdentifier)getThirdExpr()).getName()); if( _args[3] instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)_args[3]).getName()) ) _args[3] = constVars.get(((DataIdentifier)_args[3]).getName()); if ( getThirdExpr().getOutput() instanceof ConstIdentifier ) outputDim1 = ((ConstIdentifier) getThirdExpr().getOutput()).getLongValue(); if ( _args[3].getOutput() instanceof ConstIdentifier ) outputDim2 = ((ConstIdentifier) _args[3].getOutput()).getLongValue(); } break; case 5: // case - table w/ weights and output dimensions: // - table(A,B,W,dim1,dim2) or table(A,1,W,dim1,dim2) // - table(A,B,1,dim1,dim2) or table(A,1,1,dim1,dim2) if ( getThirdExpr().getOutput().getDataType() == DataType.MATRIX) checkMatchingDimensions(getFirstExpr(),getThirdExpr()); // fourth and fifth arguments must be scalars if ( _args[3].getOutput().getDataType() != DataType.SCALAR || _args[4].getOutput().getDataType() != DataType.SCALAR ) { raiseValidateError("Invalid argument types to table(): output dimensions must be of type scalar: " + this.toString(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); } else { // constant propagation if( _args[3] instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)_args[3]).getName()) ) _args[3] = constVars.get(((DataIdentifier)_args[3]).getName()); if( _args[4] instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)_args[4]).getName()) ) _args[4] = constVars.get(((DataIdentifier)_args[4]).getName()); if ( _args[3].getOutput() instanceof ConstIdentifier ) outputDim1 = ((ConstIdentifier) _args[3].getOutput()).getLongValue(); if ( _args[4].getOutput() instanceof ConstIdentifier ) outputDim2 = ((ConstIdentifier) _args[4].getOutput()).getLongValue(); } break; default: raiseValidateError("Invalid number of arguments to table(): " + this.toString(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); } // The dimensions for the output matrix will be known only at the // run time output.setDimensions(outputDim1, outputDim2); output.setBlockDimensions (-1, -1); output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); break; case MOMENT: /* * x = centralMoment(V,order) or xw = centralMoment(V,W,order) */ checkMatrixParam(getFirstExpr()); if (getThirdExpr() != null) { checkNumParameters(3); checkMatrixParam(getSecondExpr()); checkMatchingDimensions(getFirstExpr(),getSecondExpr()); checkScalarParam(getThirdExpr()); } else { checkNumParameters(2); checkScalarParam(getSecondExpr()); } // output is a scalar output.setDataType(DataType.SCALAR); output.setValueType(ValueType.DOUBLE); output.setDimensions(0, 0); output.setBlockDimensions(0,0); break; case COV: /* * x = cov(V1,V2) or xw = cov(V1,V2,W) */ if (getThirdExpr() != null) { checkNumParameters(3); } else { checkNumParameters(2); } checkMatrixParam(getFirstExpr()); checkMatrixParam(getSecondExpr()); checkMatchingDimensions(getFirstExpr(),getSecondExpr()); if (getThirdExpr() != null) { checkMatrixParam(getThirdExpr()); checkMatchingDimensions(getFirstExpr(), getThirdExpr()); } // output is a scalar output.setDataType(DataType.SCALAR); output.setValueType(ValueType.DOUBLE); output.setDimensions(0, 0); output.setBlockDimensions(0,0); break; case QUANTILE: /* * q = quantile(V1,0.5) computes median in V1 * or Q = quantile(V1,P) computes the vector of quantiles as specified by P * or qw = quantile(V1,W,0.5) computes median when weights (W) are given * or QW = quantile(V1,W,P) computes the vector of quantiles as specified by P, when weights (W) are given */ if(getThirdExpr() != null) { checkNumParameters(3); } else { checkNumParameters(2); } // first parameter must always be a 1D matrix check1DMatrixParam(getFirstExpr()); // check for matching dimensions for other matrix parameters if (getThirdExpr() != null) { checkMatrixParam(getSecondExpr()); checkMatchingDimensions(getFirstExpr(), getSecondExpr()); } // set the properties for _output expression // output dimensions = dimensions of second, if third is null // = dimensions of the third, otherwise. if (getThirdExpr() != null) { output.setDimensions(getThirdExpr().getOutput().getDim1(), getThirdExpr().getOutput() .getDim2()); output.setBlockDimensions(getThirdExpr().getOutput().getRowsInBlock(), getThirdExpr().getOutput().getColumnsInBlock()); output.setDataType(getThirdExpr().getOutput().getDataType()); } else { output.setDimensions(getSecondExpr().getOutput().getDim1(), getSecondExpr().getOutput() .getDim2()); output.setBlockDimensions(getSecondExpr().getOutput().getRowsInBlock(), getSecondExpr().getOutput().getColumnsInBlock()); output.setDataType(getSecondExpr().getOutput().getDataType()); } break; case INTERQUANTILE: if (getThirdExpr() != null) { checkNumParameters(3); } else { checkNumParameters(2); } checkMatrixParam(getFirstExpr()); if (getThirdExpr() != null) { // i.e., second input is weight vector checkMatrixParam(getSecondExpr()); checkMatchingDimensionsQuantile(); } if ((getThirdExpr() == null && getSecondExpr().getOutput().getDataType() != DataType.SCALAR) && (getThirdExpr() != null && getThirdExpr().getOutput().getDataType() != DataType.SCALAR)) { raiseValidateError("Invalid parameters to "+ this.getOpCode(), conditional, LanguageErrorCodes.INVALID_PARAMETERS); } output.setValueType(id.getValueType()); // output dimensions are unknown output.setDimensions(-1, -1); output.setBlockDimensions(-1,-1); output.setDataType(DataType.MATRIX); break; case IQM: /* * Usage: iqm = InterQuartileMean(A,W); iqm = InterQuartileMean(A); */ if (getSecondExpr() != null){ checkNumParameters(2); } else { checkNumParameters(1); } checkMatrixParam(getFirstExpr()); if (getSecondExpr() != null) { // i.e., second input is weight vector checkMatrixParam(getSecondExpr()); checkMatchingDimensions(getFirstExpr(), getSecondExpr()); } // Output is a scalar output.setValueType(id.getValueType()); output.setDimensions(0, 0); output.setBlockDimensions(0,0); output.setDataType(DataType.SCALAR); break; case MEDIAN: if (getSecondExpr() != null){ checkNumParameters(2); } else { checkNumParameters(1); } checkMatrixParam(getFirstExpr()); if (getSecondExpr() != null) { // i.e., second input is weight vector checkMatrixParam(getSecondExpr()); checkMatchingDimensions(getFirstExpr(), getSecondExpr()); } // Output is a scalar output.setValueType(id.getValueType()); output.setDimensions(0, 0); output.setBlockDimensions(0,0); output.setDataType(DataType.SCALAR); break; case SAMPLE: { Expression[] in = getAllExpr(); for(Expression e : in) checkScalarParam(e); if (in[0].getOutput().getValueType() != ValueType.DOUBLE && in[0].getOutput().getValueType() != ValueType.INT) throw new LanguageException("First argument to sample() must be a number."); if (in[1].getOutput().getValueType() != ValueType.DOUBLE && in[1].getOutput().getValueType() != ValueType.INT) throw new LanguageException("Second argument to sample() must be a number."); boolean check = false; if ( isConstant(in[0]) && isConstant(in[1]) ) { long range = ((ConstIdentifier)in[0]).getLongValue(); long size = ((ConstIdentifier)in[1]).getLongValue(); if ( range < size ) check = true; } if(in.length == 4 ) { checkNumParameters(4); if (in[3].getOutput().getValueType() != ValueType.INT) throw new LanguageException("Fourth arugment, seed, to sample() must be an integer value."); if (in[2].getOutput().getValueType() != ValueType.BOOLEAN ) throw new LanguageException("Third arugment to sample() must either denote replacement policy (boolean) or seed (integer)."); } else if(in.length == 3) { checkNumParameters(3); if (in[2].getOutput().getValueType() != ValueType.BOOLEAN && in[2].getOutput().getValueType() != ValueType.INT ) throw new LanguageException("Third arugment to sample() must either denote replacement policy (boolean) or seed (integer)."); } if ( check && in.length >= 3 && isConstant(in[2]) && in[2].getOutput().getValueType() == ValueType.BOOLEAN && !((BooleanIdentifier)in[2]).getValue() ) throw new LanguageException("Sample (size=" + ((ConstIdentifier)in[0]).getLongValue() + ") larger than population (size=" + ((ConstIdentifier)in[1]).getLongValue() + ") can only be generated with replacement."); // Output is a column vector output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); if ( isConstant(in[1]) ) output.setDimensions(((ConstIdentifier)in[1]).getLongValue(), 1); else output.setDimensions(-1, 1); setBlockDimensions(id.getRowsInBlock(), id.getColumnsInBlock()); break; } case SEQ: //basic parameter validation checkScalarParam(getFirstExpr()); checkScalarParam(getSecondExpr()); if ( getThirdExpr() != null ) { checkNumParameters(3); checkScalarParam(getThirdExpr()); } else checkNumParameters(2); // constant propagation (from, to, incr) if( getFirstExpr() instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)getFirstExpr()).getName()) ) _args[0] = constVars.get(((DataIdentifier)getFirstExpr()).getName()); if( getSecondExpr() instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)getSecondExpr()).getName()) ) _args[1] = constVars.get(((DataIdentifier)getSecondExpr()).getName()); if( getThirdExpr()!=null && getThirdExpr() instanceof DataIdentifier && constVars.containsKey(((DataIdentifier)getThirdExpr()).getName()) ) _args[2] = constVars.get(((DataIdentifier)getThirdExpr()).getName()); // check if dimensions can be inferred long dim1=-1, dim2=1; if ( isConstant(getFirstExpr()) && isConstant(getSecondExpr()) && (getThirdExpr() != null ? isConstant(getThirdExpr()) : true) ) { double from, to, incr; try { from = getDoubleValue(getFirstExpr()); to = getDoubleValue(getSecondExpr()); // Setup the value of increment // default value: 1 if from <= to; -1 if from > to if(getThirdExpr() == null) { expandArguments(); _args[2] = new DoubleIdentifier(((from > to) ? -1.0 : 1.0), this.getFilename(), this.getBeginLine(), this.getBeginColumn(), this.getEndLine(), this.getEndColumn()); } incr = getDoubleValue(getThirdExpr()); } catch (LanguageException e) { throw new LanguageException("Arguments for seq() must be numeric."); } if( (from > to) && (incr >= 0) ) throw new LanguageException("Wrong sign for the increment in a call to seq()"); // Both end points of the range must included i.e., [from,to] both inclusive. // Note that, "to" is included only if (to-from) is perfectly divisible by incr // For example, seq(0,1,0.5) produces (0.0 0.5 1.0) whereas seq(0,1,0.6) produces only (0.0 0.6) but not (0.0 0.6 1.0) dim1 = 1 + (long)Math.floor((to-from)/incr); } output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); output.setDimensions(dim1, dim2); output.setBlockDimensions(0, 0); break; case SOLVE: checkNumParameters(2); checkMatrixParam(getFirstExpr()); checkMatrixParam(getSecondExpr()); if ( getSecondExpr().getOutput().dimsKnown() && !is1DMatrix(getSecondExpr()) ) raiseValidateError("Second input to solve() must be a vector", conditional); if ( getFirstExpr().getOutput().dimsKnown() && getSecondExpr().getOutput().dimsKnown() && getFirstExpr().getOutput().getDim1() != getSecondExpr().getOutput().getDim1() ) raiseValidateError("Dimension mismatch in a call to solve()", conditional); output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); output.setDimensions(getFirstExpr().getOutput().getDim2(), 1); output.setBlockDimensions(0, 0); break; case INVERSE: checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); Identifier in = getFirstExpr().getOutput(); if(in.dimsKnown() && in.getDim1() != in.getDim2()) raiseValidateError("Input to inv() must be square matrix -- given: a " + in.getDim1() + "x" + in.getDim2() + " matrix.", conditional); output.setDimensions(in.getDim1(), in.getDim2()); output.setBlockDimensions(in.getRowsInBlock(), in.getColumnsInBlock()); break; case CHOLESKY: { // A = L%*%t(L) where L is the lower triangular matrix checkNumParameters(1); checkMatrixParam(getFirstExpr()); output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); Identifier inA = getFirstExpr().getOutput(); if(inA.dimsKnown() && inA.getDim1() != inA.getDim2()) raiseValidateError("Input to cholesky() must be square matrix -- given: a " + inA.getDim1() + "x" + inA.getDim2() + " matrix.", conditional); output.setDimensions(inA.getDim1(), inA.getDim2()); output.setBlockDimensions(inA.getRowsInBlock(), inA.getColumnsInBlock()); break; } case OUTER: Identifier id2 = this.getSecondExpr().getOutput(); //check input types and characteristics checkNumParameters(3); checkMatrixParam(getFirstExpr()); checkMatrixParam(getSecondExpr()); checkScalarParam(getThirdExpr()); checkValueTypeParam(getThirdExpr(), ValueType.STRING); if( id.getDim2() > 1 || id2.getDim1()>1 ) { raiseValidateError("Outer vector operations require a common dimension of one: " + id.getDim1()+"x"+id.getDim2()+" o "+id2.getDim1()+"x"+id2.getDim2()+".", false); } //set output characteristics output.setDataType(id.getDataType()); output.setDimensions(id.getDim1(), id2.getDim2()); output.setBlockDimensions(id.getRowsInBlock(), id.getColumnsInBlock()); break; case BIAS_ADD: case BIAS_MULTIPLY: { Expression input = _args[0]; Expression bias = _args[1]; output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); output.setDimensions(input.getOutput().getDim1(), input.getOutput().getDim2()); output.setBlockDimensions(input.getOutput().getRowsInBlock(), input.getOutput().getColumnsInBlock()); checkMatrixParam(input); checkMatrixParam(bias); break; } case CONV2D: case CONV2D_BACKWARD_FILTER: case CONV2D_BACKWARD_DATA: case MAX_POOL: case AVG_POOL: case MAX_POOL_BACKWARD: { // At DML level: // output = conv2d(input, filter, input_shape=[1, 3, 2, 2], filter_shape=[1, 3, 2, 2], // strides=[1, 1], padding=[1,1]) // // Converted to following in constructor (only supported NCHW): // output = conv2d(input, filter, stride1, stride2, padding1,padding2, // input_shape1, input_shape2, input_shape3, input_shape4, // filter_shape1, filter_shape2, filter_shape3, filter_shape4) // // Similarly, // conv2d_backward_filter and conv2d_backward_data Expression input = _args[0]; // For conv2d_backward_filter, this is input and for conv2d_backward_data, this is filter Expression filter = null; if(!(this.getOpCode() == BuiltinFunctionOp.MAX_POOL || this.getOpCode() == BuiltinFunctionOp.AVG_POOL)) { filter = _args[1]; // For conv2d_backward functions, this is dout checkMatrixParam(filter); } output.setDataType(DataType.MATRIX); output.setValueType(ValueType.DOUBLE); output.setBlockDimensions(input.getOutput().getRowsInBlock(), input.getOutput().getColumnsInBlock()); // stride1, stride2, padding1, padding2, numImg, numChannels, imgSize, imgSize, // filter_shape1=1, filter_shape2=1, filterSize/poolSize1, filterSize/poolSize1 if(this.getOpCode() == BuiltinFunctionOp.MAX_POOL_BACKWARD || this.getOpCode() == BuiltinFunctionOp.CONV2D_BACKWARD_DATA) { output.setDimensions(input.getOutput().getDim1(), input.getOutput().getDim2()); } else if(this.getOpCode() == BuiltinFunctionOp.CONV2D_BACKWARD_FILTER) { output.setDimensions(filter.getOutput().getDim1(), filter.getOutput().getDim2()); } else if(this.getOpCode() == BuiltinFunctionOp.CONV2D || this.getOpCode() == BuiltinFunctionOp.MAX_POOL) { try { int start = 1; if(this.getOpCode() == BuiltinFunctionOp.CONV2D) { start = 2; } long stride_h = (long) getDoubleValue(_args[start++]); long stride_w = (long) getDoubleValue(_args[start++]); long pad_h = (long) getDoubleValue(_args[start++]); long pad_w = (long) getDoubleValue(_args[start++]); start++; long C = (long) getDoubleValue(_args[start++]); long H = (long) getDoubleValue(_args[start++]); long W = (long) getDoubleValue(_args[start++]); long K = -1; if(this.getOpCode() == BuiltinFunctionOp.CONV2D) { K = (long) getDoubleValue(_args[start]); } start++; start++; long R = (long) getDoubleValue(_args[start++]); long S = (long) getDoubleValue(_args[start++]); long P = ConvolutionUtils.getP(H, R, stride_h, pad_h); long Q = ConvolutionUtils.getP(W, S, stride_w, pad_w); if(this.getOpCode() == BuiltinFunctionOp.CONV2D) output.setDimensions(input.getOutput().getDim1(), K*P*Q); else output.setDimensions(input.getOutput().getDim1(), C*P*Q); } catch(Exception e) { output.setDimensions(input.getOutput().getDim1(), -1); // To make sure that output dimensions are not incorrect } } else throw new LanguageException("Unsupported op: " + this.getOpCode()); checkMatrixParam(input); break; } default: if (this.isMathFunction()) { // datatype and dimensions are same as this.getExpr() if (this.getOpCode() == BuiltinFunctionOp.ABS) { output.setValueType(getFirstExpr().getOutput().getValueType()); } else { output.setValueType(ValueType.DOUBLE); } checkMathFunctionParam(); output.setDataType(id.getDataType()); output.setDimensions(id.getDim1(), id.getDim2()); output.setBlockDimensions(id.getRowsInBlock(), id.getColumnsInBlock()); } else { // always unconditional (because unsupported operation) BuiltinFunctionOp op = getOpCode(); if( op==BuiltinFunctionOp.EIGEN || op==BuiltinFunctionOp.LU || op==BuiltinFunctionOp.QR ) raiseValidateError("Function "+op+" needs to be called with multi-return assignment.", false, LanguageErrorCodes.INVALID_PARAMETERS); else raiseValidateError("Unsupported function "+op, false, LanguageErrorCodes.INVALID_PARAMETERS); } } return; } private void expandArguments() { if ( _args == null ) { _args = new Expression[1]; return; } Expression [] temp = _args.clone(); _args = new Expression[_args.length + 1]; System.arraycopy(temp, 0, _args, 0, temp.length); } @Override public boolean multipleReturns() { switch(_opcode) { case QR: case LU: case EIGEN: return true; default: return false; } } private boolean isConstant(Expression expr) { return ( expr != null && expr instanceof ConstIdentifier ); } private double getDoubleValue(Expression expr) throws LanguageException { if ( expr instanceof DoubleIdentifier ) return ((DoubleIdentifier)expr).getValue(); else if ( expr instanceof IntIdentifier) return ((IntIdentifier)expr).getValue(); else throw new LanguageException("Expecting a numeric value."); } private boolean isMathFunction() { switch (this.getOpCode()) { case COS: case SIN: case TAN: case ACOS: case ASIN: case ATAN: case SIGN: case SQRT: case ABS: case LOG: case EXP: case ROUND: case CEIL: case FLOOR: case MEDIAN: return true; default: return false; } } private void checkMathFunctionParam() throws LanguageException { switch (this.getOpCode()) { case COS: case SIN: case TAN: case ACOS: case ASIN: case ATAN: case SIGN: case SQRT: case ABS: case EXP: case ROUND: case CEIL: case FLOOR: case MEDIAN: checkNumParameters(1); break; case LOG: if (getSecondExpr() != null) { checkNumParameters(2); } else { checkNumParameters(1); } break; default: //always unconditional raiseValidateError("Unknown math function "+ this.getOpCode(), false); } } public String toString() { StringBuilder sb = new StringBuilder(_opcode.toString() + "(" + _args[0].toString()); for(int i=1; i < _args.length; i++) { sb.append(","); sb.append(_args[i].toString()); } sb.append(")"); return sb.toString(); } @Override // third part of expression IS NOT a variable -- it is the OP to be applied public VariableSet variablesRead() { VariableSet result = new VariableSet(); for(int i=0; i<_args.length; i++) { result.addVariables(_args[i].variablesRead()); } return result; } @Override public VariableSet variablesUpdated() { VariableSet result = new VariableSet(); // result.addVariables(_first.variablesUpdated()); return result; } protected void checkNumParameters(int count) //always unconditional throws LanguageException { if (getFirstExpr() == null){ raiseValidateError("Missing parameter for function "+ this.getOpCode(), false, LanguageErrorCodes.INVALID_PARAMETERS); } if (((count == 1) && (getSecondExpr()!= null || getThirdExpr() != null)) || ((count == 2) && (getThirdExpr() != null))){ raiseValidateError("Invalid number of parameters for function "+ this.getOpCode(), false, LanguageErrorCodes.INVALID_PARAMETERS); } else if (((count == 2) && (getSecondExpr() == null)) || ((count == 3) && (getSecondExpr() == null || getThirdExpr() == null))){ raiseValidateError( "Missing parameter for function "+this.getOpCode(), false, LanguageErrorCodes.INVALID_PARAMETERS); } } protected void checkMatrixParam(Expression e) //always unconditional throws LanguageException { if (e.getOutput().getDataType() != DataType.MATRIX) { raiseValidateError("Expecting matrix parameter for function "+ this.getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } protected void checkMatrixFrameParam(Expression e) //always unconditional throws LanguageException { if (e.getOutput().getDataType() != DataType.MATRIX && e.getOutput().getDataType() != DataType.FRAME) { raiseValidateError("Expecting matrix or frame parameter for function "+ getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } protected void checkMatrixScalarParam(Expression e) //always unconditional throws LanguageException { if (e.getOutput().getDataType() != DataType.MATRIX && e.getOutput().getDataType() != DataType.SCALAR) { raiseValidateError("Expecting matrix or scalar parameter for function "+ getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } private void checkScalarParam(Expression e) //always unconditional throws LanguageException { if (e.getOutput().getDataType() != DataType.SCALAR) { raiseValidateError("Expecting scalar parameter for function " + this.getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } private void checkScalarFrameParam(Expression e) //always unconditional throws LanguageException { if (e.getOutput().getDataType() != DataType.SCALAR && e.getOutput().getDataType() != DataType.FRAME) { raiseValidateError("Expecting scalar parameter for function " + this.getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } private void checkValueTypeParam(Expression e, ValueType vt) //always unconditional throws LanguageException { if (e.getOutput().getValueType() != vt) { raiseValidateError("Expecting parameter of different value type " + this.getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } private boolean is1DMatrix(Expression e) { return (e.getOutput().getDim1() == 1 || e.getOutput().getDim2() == 1 ); } private boolean dimsKnown(Expression e) { return (e.getOutput().getDim1() != -1 && e.getOutput().getDim2() != -1); } private void check1DMatrixParam(Expression e) //always unconditional throws LanguageException { checkMatrixParam(e); // throw an exception, when e's output is NOT a one-dimensional matrix // the check must be performed only when the dimensions are known at compilation time if ( dimsKnown(e) && !is1DMatrix(e)) { raiseValidateError("Expecting one-dimensional matrix parameter for function " + this.getOpCode(), false, LanguageErrorCodes.UNSUPPORTED_PARAMETERS); } } private void checkMatchingDimensions(Expression expr1, Expression expr2) throws LanguageException { checkMatchingDimensions(expr1, expr2, false); } private void checkMatchingDimensions(Expression expr1, Expression expr2, boolean allowsMV) throws LanguageException { if (expr1 != null && expr2 != null) { // if any matrix has unknown dimensions, simply return if( expr1.getOutput().getDim1() == -1 || expr2.getOutput().getDim1() == -1 ||expr1.getOutput().getDim2() == -1 || expr2.getOutput().getDim2() == -1 ) { return; } else if( (!allowsMV && expr1.getOutput().getDim1() != expr2.getOutput().getDim1()) || (allowsMV && expr1.getOutput().getDim1() != expr2.getOutput().getDim1() && expr2.getOutput().getDim1() != 1) || (!allowsMV && expr1.getOutput().getDim2() != expr2.getOutput().getDim2()) || (allowsMV && expr1.getOutput().getDim2() != expr2.getOutput().getDim2() && expr2.getOutput().getDim2() != 1) ) { raiseValidateError("Mismatch in matrix dimensions of parameters for function " + this.getOpCode(), false, LanguageErrorCodes.INVALID_PARAMETERS); } } } private void checkMatchingDimensionsQuantile() throws LanguageException { if (getFirstExpr().getOutput().getDim1() != getSecondExpr().getOutput().getDim1()) { raiseValidateError("Mismatch in matrix dimensions for " + this.getOpCode(), false, LanguageErrorCodes.INVALID_PARAMETERS); } } public static BuiltinFunctionExpression getBuiltinFunctionExpression( String functionName, ArrayList<ParameterExpression> paramExprsPassed, String filename, int blp, int bcp, int elp, int ecp) { if (functionName == null || paramExprsPassed == null) return null; // check if the function name is built-in function // (assign built-in function op if function is built-in Expression.BuiltinFunctionOp bifop = null; if (functionName.equals("avg")) bifop = Expression.BuiltinFunctionOp.MEAN; else if (functionName.equals("cos")) bifop = Expression.BuiltinFunctionOp.COS; else if (functionName.equals("sin")) bifop = Expression.BuiltinFunctionOp.SIN; else if (functionName.equals("tan")) bifop = Expression.BuiltinFunctionOp.TAN; else if (functionName.equals("acos")) bifop = Expression.BuiltinFunctionOp.ACOS; else if (functionName.equals("asin")) bifop = Expression.BuiltinFunctionOp.ASIN; else if (functionName.equals("atan")) bifop = Expression.BuiltinFunctionOp.ATAN; else if (functionName.equals("diag")) bifop = Expression.BuiltinFunctionOp.DIAG; else if (functionName.equals("exp")) bifop = Expression.BuiltinFunctionOp.EXP; else if (functionName.equals("abs")) bifop = Expression.BuiltinFunctionOp.ABS; else if (functionName.equals("min")) bifop = Expression.BuiltinFunctionOp.MIN; else if (functionName.equals("max")) bifop = Expression.BuiltinFunctionOp.MAX; //NOTE: pmin and pmax are just kept for compatibility to R // min and max is capable of handling all unary and binary // operations (in contrast to R) else if (functionName.equals("pmin")) bifop = Expression.BuiltinFunctionOp.MIN; else if (functionName.equals("pmax")) bifop = Expression.BuiltinFunctionOp.MAX; else if (functionName.equals("ppred")) bifop = Expression.BuiltinFunctionOp.PPRED; else if (functionName.equals("log")) bifop = Expression.BuiltinFunctionOp.LOG; else if (functionName.equals("length")) bifop = Expression.BuiltinFunctionOp.LENGTH; else if (functionName.equals("ncol")) bifop = Expression.BuiltinFunctionOp.NCOL; else if (functionName.equals("nrow")) bifop = Expression.BuiltinFunctionOp.NROW; else if (functionName.equals("sign")) bifop = Expression.BuiltinFunctionOp.SIGN; else if (functionName.equals("sqrt")) bifop = Expression.BuiltinFunctionOp.SQRT; else if (functionName.equals("sum")) bifop = Expression.BuiltinFunctionOp.SUM; else if (functionName.equals("mean")) bifop = Expression.BuiltinFunctionOp.MEAN; else if (functionName.equals("sd")) bifop = Expression.BuiltinFunctionOp.SD; else if (functionName.equals("var")) bifop = Expression.BuiltinFunctionOp.VAR; else if (functionName.equals("trace")) bifop = Expression.BuiltinFunctionOp.TRACE; else if (functionName.equals("t")) bifop = Expression.BuiltinFunctionOp.TRANS; else if (functionName.equals("rev")) bifop = Expression.BuiltinFunctionOp.REV; else if (functionName.equals("cbind") || functionName.equals("append")) bifop = Expression.BuiltinFunctionOp.CBIND; else if (functionName.equals("rbind")) bifop = Expression.BuiltinFunctionOp.RBIND; else if (functionName.equals("range")) bifop = Expression.BuiltinFunctionOp.RANGE; else if (functionName.equals("prod")) bifop = Expression.BuiltinFunctionOp.PROD; else if (functionName.equals("rowSums")) bifop = Expression.BuiltinFunctionOp.ROWSUM; else if (functionName.equals("colSums")) bifop = Expression.BuiltinFunctionOp.COLSUM; else if (functionName.equals("rowMins")) bifop = Expression.BuiltinFunctionOp.ROWMIN; else if (functionName.equals("colMins")) bifop = Expression.BuiltinFunctionOp.COLMIN; else if (functionName.equals("rowMaxs")) bifop = Expression.BuiltinFunctionOp.ROWMAX; else if (functionName.equals("rowIndexMax")) bifop = Expression.BuiltinFunctionOp.ROWINDEXMAX; else if (functionName.equals("rowIndexMin")) bifop = Expression.BuiltinFunctionOp.ROWINDEXMIN; else if (functionName.equals("colMaxs")) bifop = Expression.BuiltinFunctionOp.COLMAX; else if (functionName.equals("rowMeans")) bifop = Expression.BuiltinFunctionOp.ROWMEAN; else if (functionName.equals("colMeans")) bifop = Expression.BuiltinFunctionOp.COLMEAN; else if (functionName.equals("rowSds")) bifop = Expression.BuiltinFunctionOp.ROWSD; else if (functionName.equals("colSds")) bifop = Expression.BuiltinFunctionOp.COLSD; else if (functionName.equals("rowVars")) bifop = Expression.BuiltinFunctionOp.ROWVAR; else if (functionName.equals("colVars")) bifop = Expression.BuiltinFunctionOp.COLVAR; else if (functionName.equals("cummax")) bifop = Expression.BuiltinFunctionOp.CUMMAX; else if (functionName.equals("cummin")) bifop = Expression.BuiltinFunctionOp.CUMMIN; else if (functionName.equals("cumprod")) bifop = Expression.BuiltinFunctionOp.CUMPROD; else if (functionName.equals("cumsum")) bifop = Expression.BuiltinFunctionOp.CUMSUM; //'castAsScalar' for backwards compatibility else if (functionName.equals("as.scalar") || functionName.equals("castAsScalar")) bifop = Expression.BuiltinFunctionOp.CAST_AS_SCALAR; else if (functionName.equals("as.matrix")) bifop = Expression.BuiltinFunctionOp.CAST_AS_MATRIX; else if (functionName.equals("as.frame")) bifop = Expression.BuiltinFunctionOp.CAST_AS_FRAME; else if (functionName.equals("as.double")) bifop = Expression.BuiltinFunctionOp.CAST_AS_DOUBLE; else if (functionName.equals("as.integer")) bifop = Expression.BuiltinFunctionOp.CAST_AS_INT; else if (functionName.equals("as.logical")) //alternative: as.boolean bifop = Expression.BuiltinFunctionOp.CAST_AS_BOOLEAN; else if (functionName.equals("quantile")) bifop= Expression.BuiltinFunctionOp.QUANTILE; else if (functionName.equals("interQuantile")) bifop= Expression.BuiltinFunctionOp.INTERQUANTILE; else if (functionName.equals("interQuartileMean")) bifop= Expression.BuiltinFunctionOp.IQM; //'ctable' for backwards compatibility else if (functionName.equals("table") || functionName.equals("ctable")) bifop = Expression.BuiltinFunctionOp.TABLE; else if (functionName.equals("round")) bifop = Expression.BuiltinFunctionOp.ROUND; //'centralMoment' for backwards compatibility else if (functionName.equals("moment") || functionName.equals("centralMoment")) bifop = Expression.BuiltinFunctionOp.MOMENT; else if (functionName.equals("cov")) bifop = Expression.BuiltinFunctionOp.COV; else if (functionName.equals("seq")) bifop = Expression.BuiltinFunctionOp.SEQ; else if (functionName.equals("qr")) bifop = Expression.BuiltinFunctionOp.QR; else if (functionName.equals("lu")) bifop = Expression.BuiltinFunctionOp.LU; else if (functionName.equals("eigen")) bifop = Expression.BuiltinFunctionOp.EIGEN; else if (functionName.equals("conv2d")) bifop = Expression.BuiltinFunctionOp.CONV2D; else if (functionName.equals("bias_add")) bifop = Expression.BuiltinFunctionOp.BIAS_ADD; else if (functionName.equals("bias_multiply")) bifop = Expression.BuiltinFunctionOp.BIAS_MULTIPLY; else if (functionName.equals("conv2d_backward_filter")) bifop = Expression.BuiltinFunctionOp.CONV2D_BACKWARD_FILTER; else if (functionName.equals("conv2d_backward_data")) bifop = Expression.BuiltinFunctionOp.CONV2D_BACKWARD_DATA; else if (functionName.equals("max_pool")) bifop = Expression.BuiltinFunctionOp.MAX_POOL; else if (functionName.equals("max_pool_backward")) bifop = Expression.BuiltinFunctionOp.MAX_POOL_BACKWARD; else if (functionName.equals("avg_pool")) bifop = Expression.BuiltinFunctionOp.AVG_POOL; else if (functionName.equals("solve")) bifop = Expression.BuiltinFunctionOp.SOLVE; else if (functionName.equals("ceil")) bifop = Expression.BuiltinFunctionOp.CEIL; else if (functionName.equals("floor")) bifop = Expression.BuiltinFunctionOp.FLOOR; else if (functionName.equals("median")) bifop = Expression.BuiltinFunctionOp.MEDIAN; else if (functionName.equals("inv")) bifop = Expression.BuiltinFunctionOp.INVERSE; else if (functionName.equals("cholesky")) bifop = Expression.BuiltinFunctionOp.CHOLESKY; else if (functionName.equals("sample")) bifop = Expression.BuiltinFunctionOp.SAMPLE; else if ( functionName.equals("outer") ) bifop = Expression.BuiltinFunctionOp.OUTER; else return null; BuiltinFunctionExpression retVal = new BuiltinFunctionExpression(bifop, paramExprsPassed, filename, blp, bcp, elp, ecp); return retVal; } // end method getBuiltinFunctionExpression /** * Convert a value type (double, int, or boolean) to a built-in function operator. * * @param vt Value type ({@code ValueType.DOUBLE}, {@code ValueType.INT}, or {@code ValueType.BOOLEAN}). * @return Built-in function operator ({@code BuiltinFunctionOp.AS_DOUBLE}, * {@code BuiltinFunctionOp.AS_INT}, or {@code BuiltinFunctionOp.AS_BOOLEAN}). * @throws LanguageException thrown if ValueType not accepted */ public static BuiltinFunctionOp getValueTypeCastOperator( ValueType vt ) throws LanguageException { switch( vt ) { case DOUBLE: return BuiltinFunctionOp.CAST_AS_DOUBLE; case INT: return BuiltinFunctionOp.CAST_AS_INT; case BOOLEAN: return BuiltinFunctionOp.CAST_AS_BOOLEAN; default: throw new LanguageException("No cast for value type "+vt); } } }