/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.lops; import org.apache.sysml.hops.AggBinaryOp.SparkAggType; import org.apache.sysml.lops.LopProperties.ExecLocation; import org.apache.sysml.lops.LopProperties.ExecType; import org.apache.sysml.lops.compile.JobType; import org.apache.sysml.parser.Expression.DataType; import org.apache.sysml.parser.Expression.ValueType; public class MapMult extends Lop { public static final String OPCODE = "mapmm"; public enum CacheType { RIGHT, RIGHT_PART, LEFT, LEFT_PART; public boolean isRight() { return (this == RIGHT || this == RIGHT_PART); } public CacheType getFlipped() { switch( this ) { case RIGHT: return LEFT; case RIGHT_PART: return LEFT_PART; case LEFT: return RIGHT; case LEFT_PART: return RIGHT_PART; default: return null; } } } private CacheType _cacheType = null; private boolean _outputEmptyBlocks = true; //optional attribute for spark exec type private SparkAggType _aggtype = SparkAggType.MULTI_BLOCK; /** * Constructor to setup a partial Matrix-Vector Multiplication for MR * * @param input1 low-level operator 1 * @param input2 low-level operator 2 * @param dt data type * @param vt value type * @param rightCache true if right cache, false if left cache * @param partitioned true if partitioned, false if not partitioned * @param emptyBlocks true if output empty blocks * @throws LopsException if LopsException occurs */ public MapMult(Lop input1, Lop input2, DataType dt, ValueType vt, boolean rightCache, boolean partitioned, boolean emptyBlocks ) throws LopsException { super(Lop.Type.MapMult, dt, vt); this.addInput(input1); this.addInput(input2); input1.addOutput(this); input2.addOutput(this); //setup mapmult parameters if( rightCache ) _cacheType = partitioned ? CacheType.RIGHT_PART : CacheType.RIGHT; else _cacheType = partitioned ? CacheType.LEFT_PART : CacheType.LEFT; _outputEmptyBlocks = emptyBlocks; //setup MR parameters boolean breaksAlignment = true; boolean aligner = false; boolean definesMRJob = false; lps.addCompatibility(JobType.GMR); lps.addCompatibility(JobType.DATAGEN); lps.setProperties( inputs, ExecType.MR, ExecLocation.Map, breaksAlignment, aligner, definesMRJob ); } /** * Constructor to setup a partial Matrix-Vector Multiplication for Spark * * @param input1 low-level operator 1 * @param input2 low-level operator 2 * @param dt data type * @param vt value type * @param rightCache true if right cache, false if left cache * @param partitioned true if partitioned, false if not partitioned * @param emptyBlocks true if output empty blocks * @param aggtype spark aggregation type * @throws LopsException if LopsException occurs */ public MapMult(Lop input1, Lop input2, DataType dt, ValueType vt, boolean rightCache, boolean partitioned, boolean emptyBlocks, SparkAggType aggtype) throws LopsException { super(Lop.Type.MapMult, dt, vt); this.addInput(input1); this.addInput(input2); input1.addOutput(this); input2.addOutput(this); //setup mapmult parameters if( rightCache ) _cacheType = partitioned ? CacheType.RIGHT_PART : CacheType.RIGHT; else _cacheType = partitioned ? CacheType.LEFT_PART : CacheType.LEFT; _outputEmptyBlocks = emptyBlocks; _aggtype = aggtype; //setup MR parameters boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = false; lps.addCompatibility(JobType.INVALID); lps.setProperties( inputs, ExecType.SPARK, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob ); } public String toString() { return "Operation = MapMM"; } @Override public String getInstructions(int input_index1, int input_index2, int output_index) { return getInstructions(String.valueOf(input_index1), String.valueOf(input_index2), String.valueOf(output_index)); } @Override public String getInstructions(String input1, String input2, String output) { StringBuilder sb = new StringBuilder(); sb.append(getExecType()); sb.append(Lop.OPERAND_DELIMITOR); sb.append(OPCODE); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(1).prepInputOperand(input2)); sb.append(Lop.OPERAND_DELIMITOR); sb.append(prepOutputOperand(output)); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_cacheType); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_outputEmptyBlocks); if( getExecType() == ExecType.SPARK ) { sb.append(Lop.OPERAND_DELIMITOR); sb.append(_aggtype.toString()); } return sb.toString(); } @Override public boolean usesDistributedCache() { return true; } @Override public int[] distributedCacheInputIndex() { return _cacheType.isRight() ? new int[]{2} : new int[]{1}; } }