/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.instructions.spark; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; import org.apache.sysml.hops.AggBinaryOp.SparkAggType; import org.apache.sysml.runtime.DMLRuntimeException; import org.apache.sysml.runtime.controlprogram.context.ExecutionContext; import org.apache.sysml.runtime.controlprogram.context.SparkExecutionContext; import org.apache.sysml.runtime.functionobjects.Multiply; import org.apache.sysml.runtime.functionobjects.Plus; import org.apache.sysml.runtime.instructions.InstructionUtils; import org.apache.sysml.runtime.instructions.cp.CPOperand; import org.apache.sysml.runtime.instructions.spark.utils.RDDAggregateUtils; import org.apache.sysml.runtime.matrix.data.MatrixBlock; import org.apache.sysml.runtime.matrix.data.MatrixIndexes; import org.apache.sysml.runtime.matrix.mapred.IndexedMatrixValue; import org.apache.sysml.runtime.matrix.operators.AggregateBinaryOperator; import org.apache.sysml.runtime.matrix.operators.AggregateOperator; import org.apache.sysml.runtime.matrix.operators.Operator; /** * Cpmm: cross-product matrix multiplication operation (distributed matrix multiply * by join over common dimension and subsequent aggregation of partial results). * * NOTE: There is additional optimization potential by preventing aggregation for a single * block on the common dimension. However, in such a case we would never pick cpmm because * this would result in a degree of parallelism of 1. * */ public class CpmmSPInstruction extends BinarySPInstruction { private SparkAggType _aggtype; public CpmmSPInstruction(Operator op, CPOperand in1, CPOperand in2, CPOperand out, SparkAggType aggtype, String opcode, String istr ) { super(op, in1, in2, out, opcode, istr); _sptype = SPINSTRUCTION_TYPE.CPMM; _aggtype = aggtype; } public static CpmmSPInstruction parseInstruction( String str ) throws DMLRuntimeException { String[] parts = InstructionUtils.getInstructionPartsWithValueType(str); String opcode = parts[0]; if ( opcode.equalsIgnoreCase("cpmm")) { CPOperand in1 = new CPOperand(parts[1]); CPOperand in2 = new CPOperand(parts[2]); CPOperand out = new CPOperand(parts[3]); AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); AggregateBinaryOperator aggbin = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); SparkAggType aggtype = SparkAggType.valueOf(parts[4]); return new CpmmSPInstruction(aggbin, in1, in2, out, aggtype, opcode, str); } else { throw new DMLRuntimeException("AggregateBinaryInstruction.parseInstruction():: Unknown opcode " + opcode); } } @Override public void processInstruction(ExecutionContext ec) throws DMLRuntimeException { SparkExecutionContext sec = (SparkExecutionContext)ec; //get rdd inputs JavaPairRDD<MatrixIndexes,MatrixBlock> in1 = sec.getBinaryBlockRDDHandleForVariable( input1.getName() ); JavaPairRDD<MatrixIndexes,MatrixBlock> in2 = sec.getBinaryBlockRDDHandleForVariable( input2.getName() ); //process core cpmm matrix multiply JavaPairRDD<Long, IndexedMatrixValue> tmp1 = in1.mapToPair(new CpmmIndexFunction(true)); JavaPairRDD<Long, IndexedMatrixValue> tmp2 = in2.mapToPair(new CpmmIndexFunction(false)); JavaPairRDD<MatrixIndexes,MatrixBlock> out = tmp1 .join(tmp2) // join over common dimension .mapToPair(new CpmmMultiplyFunction()); // compute block multiplications //process cpmm aggregation and handle outputs if( _aggtype == SparkAggType.SINGLE_BLOCK ) { MatrixBlock out2 = RDDAggregateUtils.sumStable(out); //put output block into symbol table (no lineage because single block) //this also includes implicit maintenance of matrix characteristics sec.setMatrixOutput(output.getName(), out2); } else //DEFAULT: MULTI_BLOCK { out = RDDAggregateUtils.sumByKeyStable(out, false); //put output RDD handle into symbol table sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), input1.getName()); sec.addLineageRDD(output.getName(), input2.getName()); //update output statistics if not inferred updateBinaryMMOutputMatrixCharacteristics(sec, true); } } private static class CpmmIndexFunction implements PairFunction<Tuple2<MatrixIndexes, MatrixBlock>, Long, IndexedMatrixValue> { private static final long serialVersionUID = -1187183128301671162L; private boolean _left = false; public CpmmIndexFunction( boolean left ) { _left = left; } @Override public Tuple2<Long, IndexedMatrixValue> call(Tuple2<MatrixIndexes, MatrixBlock> arg0) throws Exception { IndexedMatrixValue value = new IndexedMatrixValue(); value.set(arg0._1(), new MatrixBlock(arg0._2())); Long key = _left ? arg0._1.getColumnIndex() : arg0._1.getRowIndex(); return new Tuple2<Long, IndexedMatrixValue>(key, value); } } private static class CpmmMultiplyFunction implements PairFunction<Tuple2<Long, Tuple2<IndexedMatrixValue,IndexedMatrixValue>>, MatrixIndexes, MatrixBlock> { private static final long serialVersionUID = -2009255629093036642L; private AggregateBinaryOperator _op = null; public CpmmMultiplyFunction() { AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); _op = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); } @Override public Tuple2<MatrixIndexes, MatrixBlock> call(Tuple2<Long, Tuple2<IndexedMatrixValue, IndexedMatrixValue>> arg0) throws Exception { MatrixBlock blkIn1 = (MatrixBlock)arg0._2()._1().getValue(); MatrixBlock blkIn2 = (MatrixBlock)arg0._2()._2().getValue(); MatrixIndexes ixOut = new MatrixIndexes(); MatrixBlock blkOut = new MatrixBlock(); //core block matrix multiplication blkIn1.aggregateBinaryOperations(blkIn1, blkIn2, blkOut, _op); //return target block ixOut.setIndexes(arg0._2()._1().getIndexes().getRowIndex(), arg0._2()._2().getIndexes().getColumnIndex()); return new Tuple2<MatrixIndexes, MatrixBlock>( ixOut, blkOut ); } } }