/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.instructions.gpu; import org.apache.sysml.runtime.DMLRuntimeException; import org.apache.sysml.runtime.controlprogram.caching.MatrixObject; import org.apache.sysml.runtime.controlprogram.context.ExecutionContext; import org.apache.sysml.runtime.instructions.cp.CPOperand; import org.apache.sysml.runtime.matrix.data.LibMatrixCUDA; import org.apache.sysml.runtime.matrix.operators.Operator; import org.apache.sysml.utils.GPUStatistics; public class MatrixBuiltinGPUInstruction extends BuiltinUnaryGPUInstruction { public MatrixBuiltinGPUInstruction(Operator op, CPOperand in, CPOperand out, String opcode, String instr){ super(op, in, out, 1, opcode, instr); _gputype = GPUINSTRUCTION_TYPE.BuiltinUnary; } @Override public void processInstruction(ExecutionContext ec) throws DMLRuntimeException { GPUStatistics.incrementNoOfExecutedGPUInst(); String opcode = getOpcode(); MatrixObject mat = getMatrixInputForGPUInstruction(ec, _input.getName()); ec.setMetaData(_output.getName(), mat.getNumRows(), mat.getNumColumns()); switch(opcode) { case "sel+": LibMatrixCUDA.relu(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "exp": LibMatrixCUDA.exp(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "sqrt": LibMatrixCUDA.sqrt(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "log": LibMatrixCUDA.log(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "round": LibMatrixCUDA.round(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "floor": LibMatrixCUDA.floor(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "ceil": LibMatrixCUDA.ceil(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "abs": LibMatrixCUDA.abs(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "sin": LibMatrixCUDA.sin(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "cos": LibMatrixCUDA.cos(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "tan": LibMatrixCUDA.tan(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "asin": LibMatrixCUDA.asin(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "acos": LibMatrixCUDA.acos(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "atan": LibMatrixCUDA.atan(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; case "sign": LibMatrixCUDA.sign(ec, ec.getGPUContext(), getExtendedOpcode(), mat, _output.getName()); break; default: throw new DMLRuntimeException("Unsupported GPU operator:" + opcode); } ec.releaseMatrixInputForGPUInstruction(_input.getName()); ec.releaseMatrixOutputForGPUInstruction(_output.getName()); } }