/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.matrix; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.mapred.Counters.Group; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.RunningJob; import org.apache.sysml.conf.ConfigurationManager; import org.apache.sysml.conf.DMLConfig; import org.apache.sysml.runtime.instructions.MRJobInstruction; import org.apache.sysml.runtime.matrix.data.InputInfo; import org.apache.sysml.runtime.matrix.data.OutputInfo; import org.apache.sysml.runtime.matrix.data.TaggedMatrixIndexes; import org.apache.sysml.runtime.matrix.data.WeightedCell; import org.apache.sysml.runtime.matrix.mapred.GroupedAggMRCombiner; import org.apache.sysml.runtime.matrix.mapred.GroupedAggMRMapper; import org.apache.sysml.runtime.matrix.mapred.GroupedAggMRReducer; import org.apache.sysml.runtime.matrix.mapred.MRConfigurationNames; import org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration; import org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration.ConvertTarget; import org.apache.sysml.runtime.util.MapReduceTool; public class GroupedAggMR { private static final Log LOG = LogFactory.getLog(GroupedAggMR.class.getName()); private GroupedAggMR() { //prevent instantiation via private constructor } public static JobReturn runJob(MRJobInstruction inst, String[] inputs, InputInfo[] inputInfos, long[] rlens, long[] clens, int[] brlens, int[] bclens, String grpAggInstructions, String simpleReduceInstructions/*only scalar or reorg instructions allowed*/, int numReducers, int replication, byte[] resultIndexes, String dimsUnknownFilePrefix, String[] outputs, OutputInfo[] outputInfos) throws Exception { JobConf job = new JobConf(GroupedAggMR.class); job.setJobName("GroupedAgg-MR"); //whether use block representation or cell representation //MRJobConfiguration.setMatrixValueClassForCM_N_COM(job, true); MRJobConfiguration.setMatrixValueClass(job, false); //added for handling recordreader instruction String[] realinputs=inputs; InputInfo[] realinputInfos=inputInfos; long[] realrlens=rlens; long[] realclens=clens; int[] realbrlens=brlens; int[] realbclens=bclens; byte[] realIndexes=new byte[inputs.length]; for(byte b=0; b<realIndexes.length; b++) realIndexes[b]=b; //set up the input files and their format information MRJobConfiguration.setUpMultipleInputs(job, realIndexes, realinputs, realinputInfos, realbrlens, realbclens, true, ConvertTarget.WEIGHTEDCELL); //set up the dimensions of input matrices MRJobConfiguration.setMatricesDimensions(job, realIndexes, realrlens, realclens); MRJobConfiguration.setDimsUnknownFilePrefix(job, dimsUnknownFilePrefix); //set up the block size MRJobConfiguration.setBlocksSizes(job, realIndexes, realbrlens, realbclens); //set up the grouped aggregate instructions that will happen in the combiner and reducer MRJobConfiguration.setGroupedAggInstructions(job, grpAggInstructions); //set up the instructions that will happen in the reducer, after the aggregation instrucions MRJobConfiguration.setInstructionsInReducer(job, simpleReduceInstructions); //set up the number of reducers MRJobConfiguration.setNumReducers(job, numReducers, numReducers); //set up the replication factor for the results job.setInt(MRConfigurationNames.DFS_REPLICATION, replication); //set up custom map/reduce configurations DMLConfig config = ConfigurationManager.getDMLConfig(); MRJobConfiguration.setupCustomMRConfigurations(job, config); //set up what matrices are needed to pass from the mapper to reducer MRJobConfiguration.setUpOutputIndexesForMapper(job, realIndexes, null, null, grpAggInstructions, resultIndexes); MatrixCharacteristics[] stats=new MatrixCharacteristics[resultIndexes.length]; for( int i=0; i < resultIndexes.length; i++ ) stats[i] = new MatrixCharacteristics(); // Print the complete instruction if (LOG.isTraceEnabled()) inst.printCompleteMRJobInstruction(stats); byte[] resultDimsUnknown=new byte[resultIndexes.length]; // Update resultDimsUnknown based on computed "stats" for ( int i=0; i < resultIndexes.length; i++ ) resultDimsUnknown[i] = (byte) 2; //set up the multiple output files, and their format information MRJobConfiguration.setUpMultipleOutputs(job, resultIndexes, resultDimsUnknown, outputs, outputInfos, false); // configure mapper and the mapper output key value pairs job.setMapperClass(GroupedAggMRMapper.class); job.setCombinerClass(GroupedAggMRCombiner.class); job.setMapOutputKeyClass(TaggedMatrixIndexes.class); job.setMapOutputValueClass(WeightedCell.class); //configure reducer job.setReducerClass(GroupedAggMRReducer.class); //set unique working dir MRJobConfiguration.setUniqueWorkingDir(job); //execute job RunningJob runjob=JobClient.runJob(job); //get important output statistics Group group=runjob.getCounters().getGroup(MRJobConfiguration.NUM_NONZERO_CELLS); for(int i=0; i<resultIndexes.length; i++) { // number of non-zeros stats[i]=new MatrixCharacteristics(); stats[i].setNonZeros(group.getCounter(Integer.toString(i))); } String dir = dimsUnknownFilePrefix + "/" + runjob.getID().toString() + "_dimsFile"; stats = MapReduceTool.processDimsFiles(dir, stats); MapReduceTool.deleteFileIfExistOnHDFS(dir); return new JobReturn(stats, outputInfos, runjob.isSuccessful()); } }