/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.sysml.runtime.matrix.mapred;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.sysml.runtime.instructions.mr.AppendRInstruction;
import org.apache.sysml.runtime.instructions.mr.MRInstruction;
import org.apache.sysml.runtime.instructions.mr.TernaryInstruction;
import org.apache.sysml.runtime.matrix.MatrixCharacteristics;
import org.apache.sysml.runtime.matrix.data.MatrixCell;
import org.apache.sysml.runtime.matrix.data.MatrixIndexes;
import org.apache.sysml.runtime.matrix.data.MatrixPackedCell;
import org.apache.sysml.runtime.matrix.data.MatrixValue;
import org.apache.sysml.runtime.matrix.data.TaggedMatrixValue;
public class GMRReducer extends ReduceBase
implements Reducer<MatrixIndexes, TaggedMatrixValue, MatrixIndexes, MatrixValue>
{
private MatrixValue realOutValue;
private GMRCtableBuffer _buff;
@Override
public void reduce(MatrixIndexes indexes, Iterator<TaggedMatrixValue> values,
OutputCollector<MatrixIndexes, MatrixValue> out, Reporter reporter)
throws IOException
{
long start=System.currentTimeMillis();
commonSetup(reporter);
cachedValues.reset();
//perform aggregate operations first
processAggregateInstructions(indexes, values);
//perform mixed operations
processReducerInstructionsInGMR(indexes);
//output the final result matrices
outputResultsFromCachedValuesForGMR(reporter);
reporter.incrCounter(Counters.COMBINE_OR_REDUCE_TIME, System.currentTimeMillis()-start);
}
protected void processReducerInstructionsInGMR(MatrixIndexes indexes)
throws IOException
{
if(mixed_instructions==null)
return;
try
{
for(MRInstruction ins: mixed_instructions)
{
if(ins instanceof TernaryInstruction)
{
MatrixCharacteristics dim = dimensions.get(((TernaryInstruction) ins).input1);
((TernaryInstruction) ins).processInstruction(valueClass, cachedValues, zeroInput, _buff.getMapBuffer(), _buff.getBlockBuffer(), dim.getRowsPerBlock(), dim.getColsPerBlock());
if( _buff.getBufferSize() > GMRCtableBuffer.MAX_BUFFER_SIZE )
_buff.flushBuffer(cachedReporter); //prevent oom for large/many ctables
}
else if(ins instanceof AppendRInstruction) {
MatrixCharacteristics dims1 = dimensions.get(((AppendRInstruction) ins).input1);
MatrixCharacteristics dims2 = dimensions.get(((AppendRInstruction) ins).input2);
long nbi1 = (long) Math.ceil((double)dims1.getRows()/dims1.getRowsPerBlock());
long nbi2 = (long) Math.ceil((double)dims2.getRows()/dims2.getRowsPerBlock());
long nbj1 = (long) Math.ceil((double)dims1.getCols()/dims1.getColsPerBlock());
long nbj2 = (long) Math.ceil((double)dims2.getCols()/dims2.getColsPerBlock());
// Execute the instruction only if current indexes fall within the range of input dimensions
if((nbi1 < indexes.getRowIndex() && nbi2 < indexes.getRowIndex()) || (nbj1 < indexes.getColumnIndex() && nbj2 < indexes.getColumnIndex()))
continue;
else
processOneInstruction(ins, valueClass, cachedValues, tempValue, zeroInput);
}
else
processOneInstruction(ins, valueClass, cachedValues, tempValue, zeroInput);
}
}
catch (Exception e) {
throw new IOException(e);
}
}
protected void outputResultsFromCachedValuesForGMR(Reporter reporter) throws IOException
{
for(int i=0; i<resultIndexes.length; i++)
{
byte output=resultIndexes[i];
ArrayList<IndexedMatrixValue> outValueList = cachedValues.get(output);
if( outValueList == null )
continue;
for(IndexedMatrixValue outValue : outValueList) //for all blocks of given index
{
if(valueClass.equals(MatrixPackedCell.class)) {
realOutValue.copy(outValue.getValue());
collectOutput_N_Increase_Counter(outValue.getIndexes(), realOutValue, i, reporter);
}
else
collectOutput_N_Increase_Counter(outValue.getIndexes(), outValue.getValue(), i, reporter);
}
}
}
@Override
public void configure(JobConf job)
{
super.configure(job);
//init ctable buffer (if required, after super init)
if( containsTernaryInstruction() ){
_buff = new GMRCtableBuffer(collectFinalMultipleOutputs, dimsKnownForTernaryInstructions());
_buff.setMetadataReferences(resultIndexes, resultsNonZeros, resultDimsUnknown, resultsMaxRowDims, resultsMaxColDims);
prepareMatrixCharacteristicsTernaryInstruction(job); //put matrix characteristics in dimensions map
}
try {
realOutValue=valueClass.newInstance();
} catch (Exception e) {
throw new RuntimeException(e);
}
//this is to make sure that aggregation works for GMR
if(valueClass.equals(MatrixCell.class))
valueClass=MatrixPackedCell.class;
}
@Override
public void close()throws IOException
{
//flush ctable buffer (if required)
if( containsTernaryInstruction() )
_buff.flushBuffer(cachedReporter);
super.close();
}
}