/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.instructions.spark; import java.util.ArrayList; import java.util.Iterator; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.function.PairFlatMapFunction; import scala.Tuple2; import org.apache.sysml.hops.OptimizerUtils; import org.apache.sysml.lops.MapMult.CacheType; import org.apache.sysml.lops.PMMJ; import org.apache.sysml.runtime.DMLRuntimeException; import org.apache.sysml.runtime.controlprogram.context.ExecutionContext; import org.apache.sysml.runtime.controlprogram.context.SparkExecutionContext; import org.apache.sysml.runtime.functionobjects.Multiply; import org.apache.sysml.runtime.functionobjects.Plus; import org.apache.sysml.runtime.instructions.InstructionUtils; import org.apache.sysml.runtime.instructions.cp.CPOperand; import org.apache.sysml.runtime.instructions.spark.data.PartitionedBroadcast; import org.apache.sysml.runtime.instructions.spark.utils.RDDAggregateUtils; import org.apache.sysml.runtime.matrix.MatrixCharacteristics; import org.apache.sysml.runtime.matrix.data.MatrixBlock; import org.apache.sysml.runtime.matrix.data.MatrixIndexes; import org.apache.sysml.runtime.matrix.operators.AggregateBinaryOperator; import org.apache.sysml.runtime.matrix.operators.AggregateOperator; import org.apache.sysml.runtime.matrix.operators.Operator; import org.apache.sysml.runtime.util.UtilFunctions; public class PmmSPInstruction extends BinarySPInstruction { private CacheType _type = null; private CPOperand _nrow = null; public PmmSPInstruction(Operator op, CPOperand in1, CPOperand in2, CPOperand out, CPOperand nrow, CacheType type, String opcode, String istr ) { super(op, in1, in2, out, opcode, istr); _sptype = SPINSTRUCTION_TYPE.PMM; _type = type; _nrow = nrow; } public static PmmSPInstruction parseInstruction( String str ) throws DMLRuntimeException { String parts[] = InstructionUtils.getInstructionPartsWithValueType(str); String opcode = InstructionUtils.getOpCode(str); if ( opcode.equalsIgnoreCase(PMMJ.OPCODE)) { CPOperand in1 = new CPOperand(parts[1]); CPOperand in2 = new CPOperand(parts[2]); CPOperand nrow = new CPOperand(parts[3]); CPOperand out = new CPOperand(parts[4]); CacheType type = CacheType.valueOf(parts[5]); AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); AggregateBinaryOperator aggbin = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg); return new PmmSPInstruction(aggbin, in1, in2, out, nrow, type, opcode, str); } else { throw new DMLRuntimeException("PmmSPInstruction.parseInstruction():: Unknown opcode " + opcode); } } @Override public void processInstruction(ExecutionContext ec) throws DMLRuntimeException { SparkExecutionContext sec = (SparkExecutionContext)ec; String rddVar = (_type==CacheType.LEFT) ? input2.getName() : input1.getName(); String bcastVar = (_type==CacheType.LEFT) ? input1.getName() : input2.getName(); MatrixCharacteristics mc = sec.getMatrixCharacteristics(output.getName()); long rlen = sec.getScalarInput(_nrow.getName(), _nrow.getValueType(), _nrow.isLiteral()).getLongValue(); //get inputs JavaPairRDD<MatrixIndexes,MatrixBlock> in1 = sec.getBinaryBlockRDDHandleForVariable( rddVar ); PartitionedBroadcast<MatrixBlock> in2 = sec.getBroadcastForVariable( bcastVar ); //execute pmm instruction JavaPairRDD<MatrixIndexes,MatrixBlock> out = in1 .flatMapToPair( new RDDPMMFunction(_type, in2, rlen, mc.getRowsPerBlock()) ); out = RDDAggregateUtils.sumByKeyStable(out, false); //put output RDD handle into symbol table sec.setRDDHandleForVariable(output.getName(), out); sec.addLineageRDD(output.getName(), rddVar); sec.addLineageBroadcast(output.getName(), bcastVar); //update output statistics if not inferred updateBinaryMMOutputMatrixCharacteristics(sec, false); } private static class RDDPMMFunction implements PairFlatMapFunction<Tuple2<MatrixIndexes, MatrixBlock>, MatrixIndexes, MatrixBlock> { private static final long serialVersionUID = -1696560050436469140L; private PartitionedBroadcast<MatrixBlock> _pmV = null; private long _rlen = -1; private int _brlen = -1; public RDDPMMFunction( CacheType type, PartitionedBroadcast<MatrixBlock> binput, long rlen, int brlen ) throws DMLRuntimeException { _brlen = brlen; _rlen = rlen; _pmV = binput; } @Override public Iterator<Tuple2<MatrixIndexes, MatrixBlock>> call( Tuple2<MatrixIndexes, MatrixBlock> arg0 ) throws Exception { ArrayList<Tuple2<MatrixIndexes,MatrixBlock>> ret = new ArrayList<Tuple2<MatrixIndexes,MatrixBlock>>(); MatrixIndexes ixIn = arg0._1(); MatrixBlock mb2 = arg0._2(); //get the right hand side matrix MatrixBlock mb1 = _pmV.getBlock((int)ixIn.getRowIndex(), 1); //compute target block indexes long minPos = UtilFunctions.toLong( mb1.minNonZero() ); long maxPos = UtilFunctions.toLong( mb1.max() ); long rowIX1 = (minPos-1)/_brlen+1; long rowIX2 = (maxPos-1)/_brlen+1; boolean multipleOuts = (rowIX1 != rowIX2); if( minPos >= 1 ) //at least one row selected { //output sparsity estimate double spmb1 = OptimizerUtils.getSparsity(mb1.getNumRows(), 1, mb1.getNonZeros()); long estnnz = (long) (spmb1 * mb2.getNonZeros()); boolean sparse = MatrixBlock.evalSparseFormatInMemory(_brlen, mb2.getNumColumns(), estnnz); //compute and allocate output blocks MatrixBlock out1 = new MatrixBlock(); MatrixBlock out2 = multipleOuts ? new MatrixBlock() : null; out1.reset(_brlen, mb2.getNumColumns(), sparse); if( out2 != null ) out2.reset(UtilFunctions.computeBlockSize(_rlen, rowIX2, _brlen), mb2.getNumColumns(), sparse); //compute core matrix permutation (assumes that out1 has default blocksize, //hence we do a meta data correction afterwards) mb1.permutationMatrixMultOperations(mb2, out1, out2); out1.setNumRows(UtilFunctions.computeBlockSize(_rlen, rowIX1, _brlen)); ret.add(new Tuple2<MatrixIndexes, MatrixBlock>(new MatrixIndexes(rowIX1, ixIn.getColumnIndex()), out1)); if( out2 != null ) ret.add(new Tuple2<MatrixIndexes, MatrixBlock>(new MatrixIndexes(rowIX2, ixIn.getColumnIndex()), out2)); } return ret.iterator(); } } }