/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.instructions.gpu; import org.apache.sysml.runtime.DMLRuntimeException; import org.apache.sysml.runtime.controlprogram.caching.MatrixObject; import org.apache.sysml.runtime.controlprogram.context.ExecutionContext; import org.apache.sysml.runtime.functionobjects.Multiply; import org.apache.sysml.runtime.functionobjects.Plus; import org.apache.sysml.runtime.functionobjects.SwapIndex; import org.apache.sysml.runtime.instructions.InstructionUtils; import org.apache.sysml.runtime.instructions.cp.CPOperand; import org.apache.sysml.runtime.matrix.data.LibMatrixCUDA; import org.apache.sysml.runtime.matrix.data.MatrixBlock; import org.apache.sysml.runtime.matrix.operators.AggregateBinaryOperator; import org.apache.sysml.runtime.matrix.operators.AggregateOperator; import org.apache.sysml.runtime.matrix.operators.Operator; import org.apache.sysml.runtime.matrix.operators.ReorgOperator; import org.apache.sysml.utils.GPUStatistics; public class AggregateBinaryGPUInstruction extends GPUInstruction { private CPOperand _input1 = null; private CPOperand _input2 = null; private CPOperand _output = null; private boolean _isLeftTransposed; private boolean _isRightTransposed; public AggregateBinaryGPUInstruction(Operator op, CPOperand in1, CPOperand in2, CPOperand out, String opcode, String istr, boolean leftTranspose, boolean rightTranspose) { super(op, opcode, istr); _gputype = GPUINSTRUCTION_TYPE.AggregateBinary; _input1 = in1; _input2 = in2; _output = out; _isLeftTransposed = leftTranspose; _isRightTransposed = rightTranspose; } public static AggregateBinaryGPUInstruction parseInstruction( String str ) throws DMLRuntimeException { String[] parts = InstructionUtils.getInstructionPartsWithValueType(str); String opcode = parts[0]; if ( !opcode.equalsIgnoreCase("ba+*")) { throw new DMLRuntimeException("AggregateBinaryInstruction.parseInstruction():: Unknown opcode " + opcode); } InstructionUtils.checkNumFields( parts, 5 ); CPOperand in1 = new CPOperand(parts[1]); CPOperand in2 = new CPOperand(parts[2]); CPOperand out = new CPOperand(parts[3]); boolean isLeftTransposed = Boolean.parseBoolean(parts[4]); boolean isRightTransposed = Boolean.parseBoolean(parts[5]); AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject()); AggregateBinaryOperator aggbin = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg, 1); return new AggregateBinaryGPUInstruction(aggbin, in1, in2, out, opcode, str, isLeftTransposed, isRightTransposed); } @Override public void processInstruction(ExecutionContext ec) throws DMLRuntimeException { GPUStatistics.incrementNoOfExecutedGPUInst(); AggregateBinaryOperator op = (AggregateBinaryOperator) _optr; if( !(op.binaryFn instanceof Multiply && op.aggOp.increOp.fn instanceof Plus) ) { throw new DMLRuntimeException("Unsupported binary aggregate operation: ("+op.binaryFn+", "+op.aggOp+")."); } //get inputs MatrixObject m1 = getMatrixInputForGPUInstruction(ec, _input1.getName()); MatrixObject m2 = getMatrixInputForGPUInstruction(ec, _input2.getName()); //compute matrix multiplication int rlen = (int) (_isLeftTransposed ? m1.getNumColumns() : m1.getNumRows()); int clen = (int) (_isRightTransposed ? m2.getNumRows() : m2.getNumColumns()); ec.setMetaData(_output.getName(), rlen, clen); LibMatrixCUDA.matmult(ec, ec.getGPUContext(), getExtendedOpcode(), m1, m2, _output.getName(), _isLeftTransposed, _isRightTransposed); //release inputs/outputs ec.releaseMatrixInputForGPUInstruction(_input1.getName()); ec.releaseMatrixInputForGPUInstruction(_input2.getName()); ec.releaseMatrixOutputForGPUInstruction(_output.getName()); } @SuppressWarnings("unused") private MatrixBlock transpose(MatrixBlock m1) throws DMLRuntimeException { ReorgOperator r_op = new ReorgOperator(SwapIndex.getSwapIndexFnObject(), 1); return (MatrixBlock) (m1.reorgOperations(r_op, new MatrixBlock(), 0, 0, 0)); } @SuppressWarnings("unused") private boolean isSparse(ExecutionContext ec, String var) throws DMLRuntimeException { MatrixObject mo = ec.getMatrixObject(var); return LibMatrixCUDA.isInSparseFormat(ec.getGPUContext(), mo); } }