/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.controlprogram.context; import java.io.IOException; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.log4j.Level; import org.apache.log4j.Logger; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.broadcast.Broadcast; import org.apache.spark.storage.RDDInfo; import org.apache.spark.storage.StorageLevel; import org.apache.spark.util.LongAccumulator; import org.apache.sysml.api.DMLScript; import org.apache.sysml.api.MLContextProxy; import org.apache.sysml.api.mlcontext.MLContextUtil; import org.apache.sysml.conf.ConfigurationManager; import org.apache.sysml.hops.OptimizerUtils; import org.apache.sysml.lops.Checkpoint; import org.apache.sysml.parser.Expression.ValueType; import org.apache.sysml.runtime.DMLRuntimeException; import org.apache.sysml.runtime.controlprogram.Program; import org.apache.sysml.runtime.controlprogram.caching.CacheableData; import org.apache.sysml.runtime.controlprogram.caching.FrameObject; import org.apache.sysml.runtime.controlprogram.caching.MatrixObject; import org.apache.sysml.runtime.controlprogram.parfor.stat.InfrastructureAnalyzer; import org.apache.sysml.runtime.instructions.cp.Data; import org.apache.sysml.runtime.instructions.spark.data.BroadcastObject; import org.apache.sysml.runtime.instructions.spark.data.LineageObject; import org.apache.sysml.runtime.instructions.spark.data.PartitionedBlock; import org.apache.sysml.runtime.instructions.spark.data.PartitionedBroadcast; import org.apache.sysml.runtime.instructions.spark.data.RDDObject; import org.apache.sysml.runtime.instructions.spark.functions.ComputeBinaryBlockNnzFunction; import org.apache.sysml.runtime.instructions.spark.functions.CopyBinaryCellFunction; import org.apache.sysml.runtime.instructions.spark.functions.CopyFrameBlockPairFunction; import org.apache.sysml.runtime.instructions.spark.functions.CopyTextInputFunction; import org.apache.sysml.runtime.instructions.spark.functions.CreateSparseBlockFunction; import org.apache.sysml.runtime.instructions.spark.utils.FrameRDDConverterUtils.LongFrameToLongWritableFrameFunction; import org.apache.sysml.runtime.instructions.spark.utils.RDDAggregateUtils; import org.apache.sysml.runtime.instructions.spark.utils.SparkUtils; import org.apache.sysml.runtime.matrix.MatrixCharacteristics; import org.apache.sysml.runtime.matrix.data.FrameBlock; import org.apache.sysml.runtime.matrix.data.InputInfo; import org.apache.sysml.runtime.matrix.data.MatrixBlock; import org.apache.sysml.runtime.matrix.data.MatrixCell; import org.apache.sysml.runtime.matrix.data.MatrixIndexes; import org.apache.sysml.runtime.matrix.data.OutputInfo; import org.apache.sysml.runtime.matrix.data.SparseBlock; import org.apache.sysml.runtime.matrix.mapred.MRJobConfiguration; import org.apache.sysml.runtime.util.MapReduceTool; import org.apache.sysml.runtime.util.UtilFunctions; import org.apache.sysml.utils.Statistics; import scala.Tuple2; public class SparkExecutionContext extends ExecutionContext { private static final Log LOG = LogFactory.getLog(SparkExecutionContext.class.getName()); private static final boolean LDEBUG = false; //local debug flag //internal configurations private static boolean LAZY_SPARKCTX_CREATION = true; private static boolean ASYNCHRONOUS_VAR_DESTROY = true; public static boolean FAIR_SCHEDULER_MODE = true; //executor memory and relative fractions as obtained from the spark configuration private static SparkClusterConfig _sconf = null; //singleton spark context (as there can be only one spark context per JVM) private static JavaSparkContext _spctx = null; //registry of parallelized RDDs to enforce that at any time, we spent at most //10% of JVM max heap size for parallelized RDDs; if this is not sufficient, //matrices or frames are exported to HDFS and the RDDs are created from files. //TODO unify memory management for CP, par RDDs, and potentially broadcasts private static MemoryManagerParRDDs _parRDDs = new MemoryManagerParRDDs(0.1); static { // for internal debugging only if( LDEBUG ) { Logger.getLogger("org.apache.sysml.runtime.controlprogram.context") .setLevel((Level) Level.DEBUG); } } protected SparkExecutionContext(boolean allocateVars, Program prog) { //protected constructor to force use of ExecutionContextFactory super( allocateVars, prog ); //spark context creation via internal initializer if( !(LAZY_SPARKCTX_CREATION && OptimizerUtils.isHybridExecutionMode()) ) { initSparkContext(); } } /** * Returns the used singleton spark context. In case of lazy spark context * creation, this methods blocks until the spark context is created. * * @return java spark context */ public JavaSparkContext getSparkContext() { //lazy spark context creation on demand (lazy instead of asynchronous //to avoid wait for uninitialized spark context on close) if( LAZY_SPARKCTX_CREATION ) { initSparkContext(); } //return the created spark context return _spctx; } public static JavaSparkContext getSparkContextStatic() { initSparkContext(); return _spctx; } /** * Indicates if the spark context has been created or has * been passed in from outside. * * @return true if spark context created */ public synchronized static boolean isSparkContextCreated() { return (_spctx != null); } public static void resetSparkContextStatic() { _spctx = null; } public void close() { synchronized( SparkExecutionContext.class ) { if( _spctx != null ) { //stop the spark context if existing _spctx.stop(); //make sure stopped context is never used again _spctx = null; } } } public static boolean isLazySparkContextCreation(){ return LAZY_SPARKCTX_CREATION; } @SuppressWarnings("deprecation") private synchronized static void initSparkContext() { //check for redundant spark context init if( _spctx != null ) return; long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; //create a default spark context (master, appname, etc refer to system properties //as given in the spark configuration or during spark-submit) Object mlCtxObj = MLContextProxy.getActiveMLContext(); if(mlCtxObj != null) { // This is when DML is called through spark shell // Will clean the passing of static variables later as this involves minimal change to DMLScript if (mlCtxObj instanceof org.apache.sysml.api.MLContext) { org.apache.sysml.api.MLContext mlCtx = (org.apache.sysml.api.MLContext) mlCtxObj; _spctx = new JavaSparkContext(mlCtx.getSparkContext()); } else if (mlCtxObj instanceof org.apache.sysml.api.mlcontext.MLContext) { org.apache.sysml.api.mlcontext.MLContext mlCtx = (org.apache.sysml.api.mlcontext.MLContext) mlCtxObj; _spctx = MLContextUtil.getJavaSparkContext(mlCtx); } } else { if(DMLScript.USE_LOCAL_SPARK_CONFIG) { // For now set 4 cores for integration testing :) SparkConf conf = createSystemMLSparkConf() .setMaster("local[*]").setAppName("My local integration test app"); // This is discouraged in spark but have added only for those testcase that cannot stop the context properly // conf.set("spark.driver.allowMultipleContexts", "true"); conf.set("spark.ui.enabled", "false"); _spctx = new JavaSparkContext(conf); } else //default cluster setup { //setup systemml-preferred spark configuration (w/o user choice) SparkConf conf = createSystemMLSparkConf(); _spctx = new JavaSparkContext(conf); } _parRDDs.clear(); } // Set warning if spark.driver.maxResultSize is not set. It needs to be set before starting Spark Context for CP collect String strDriverMaxResSize = _spctx.getConf().get("spark.driver.maxResultSize", "1g"); long driverMaxResSize = UtilFunctions.parseMemorySize(strDriverMaxResSize); if (driverMaxResSize != 0 && driverMaxResSize<OptimizerUtils.getLocalMemBudget() && !DMLScript.USE_LOCAL_SPARK_CONFIG) LOG.warn("Configuration parameter spark.driver.maxResultSize set to " + UtilFunctions.formatMemorySize(driverMaxResSize) + "." + " You can set it through Spark default configuration setting either to 0 (unlimited) or to available memory budget of size " + UtilFunctions.formatMemorySize((long)OptimizerUtils.getLocalMemBudget()) + "."); //globally add binaryblock serialization framework for all hdfs read/write operations //TODO if spark context passed in from outside (mlcontext), we need to clean this up at the end if( MRJobConfiguration.USE_BINARYBLOCK_SERIALIZATION ) MRJobConfiguration.addBinaryBlockSerializationFramework( _spctx.hadoopConfiguration() ); //statistics maintenance if( DMLScript.STATISTICS ){ Statistics.setSparkCtxCreateTime(System.nanoTime()-t0); } } /** * Sets up a SystemML-preferred Spark configuration based on the implicit * default configuration (as passed via configurations from outside). * * @return spark configuration */ public static SparkConf createSystemMLSparkConf() { SparkConf conf = new SparkConf(); //always set unlimited result size (required for cp collect) conf.set("spark.driver.maxResultSize", "0"); //always use the fair scheduler (for single jobs, it's equivalent to fifo //but for concurrent jobs in parfor it ensures better data locality because //round robin assignment mitigates the problem of 'sticky slots') if( FAIR_SCHEDULER_MODE ) { conf.set("spark.scheduler.mode", "FAIR"); } //increase scheduler delay (usually more robust due to better data locality) if( !conf.contains("spark.locality.wait") ) { //default 3s conf.set("spark.locality.wait", "5s"); } return conf; } /** * Spark instructions should call this for all matrix inputs except broadcast * variables. * * @param varname variable name * @return JavaPairRDD of MatrixIndexes-MatrixBlocks * @throws DMLRuntimeException if DMLRuntimeException occurs */ @SuppressWarnings("unchecked") public JavaPairRDD<MatrixIndexes,MatrixBlock> getBinaryBlockRDDHandleForVariable( String varname ) throws DMLRuntimeException { return (JavaPairRDD<MatrixIndexes,MatrixBlock>) getRDDHandleForVariable( varname, InputInfo.BinaryBlockInputInfo); } /** * Spark instructions should call this for all frame inputs except broadcast * variables. * * @param varname variable name * @return JavaPairRDD of Longs-FrameBlocks * @throws DMLRuntimeException if DMLRuntimeException occurs */ @SuppressWarnings("unchecked") public JavaPairRDD<Long,FrameBlock> getFrameBinaryBlockRDDHandleForVariable( String varname ) throws DMLRuntimeException { JavaPairRDD<Long,FrameBlock> out = (JavaPairRDD<Long,FrameBlock>) getRDDHandleForVariable( varname, InputInfo.BinaryBlockInputInfo); return out; } public JavaPairRDD<?,?> getRDDHandleForVariable( String varname, InputInfo inputInfo ) throws DMLRuntimeException { Data dat = getVariable(varname); if( dat instanceof MatrixObject ) { MatrixObject mo = getMatrixObject(varname); return getRDDHandleForMatrixObject(mo, inputInfo); } else if( dat instanceof FrameObject ) { FrameObject fo = getFrameObject(varname); return getRDDHandleForFrameObject(fo, inputInfo); } else { throw new DMLRuntimeException("Failed to obtain RDD for data type other than matrix or frame."); } } /** * This call returns an RDD handle for a given matrix object. This includes * the creation of RDDs for in-memory or binary-block HDFS data. * * @param mo matrix object * @param inputInfo input info * @return JavaPairRDD handle for a matrix object * @throws DMLRuntimeException if DMLRuntimeException occurs */ @SuppressWarnings("unchecked") public JavaPairRDD<?,?> getRDDHandleForMatrixObject( MatrixObject mo, InputInfo inputInfo ) throws DMLRuntimeException { //NOTE: MB this logic should be integrated into MatrixObject //However, for now we cannot assume that spark libraries are //always available and hence only store generic references in //matrix object while all the logic is in the SparkExecContext JavaSparkContext sc = getSparkContext(); JavaPairRDD<?,?> rdd = null; //CASE 1: rdd already existing (reuse if checkpoint or trigger //pending rdd operations if not yet cached but prevent to re-evaluate //rdd operations if already executed and cached if( mo.getRDDHandle()!=null && (mo.getRDDHandle().isCheckpointRDD() || !mo.isCached(false)) ) { //return existing rdd handling (w/o input format change) rdd = mo.getRDDHandle().getRDD(); } //CASE 2: dirty in memory data or cached result of rdd operations else if( mo.isDirty() || mo.isCached(false) ) { //get in-memory matrix block and parallelize it //w/ guarded parallelize (fallback to export, rdd from file if too large) MatrixCharacteristics mc = mo.getMatrixCharacteristics(); boolean fromFile = false; if( !OptimizerUtils.checkSparkCollectMemoryBudget(mc, 0) || !_parRDDs.reserve( OptimizerUtils.estimatePartitionedSizeExactSparsity(mc))) { if( mo.isDirty() ) { //write only if necessary mo.exportData(); } rdd = sc.hadoopFile( mo.getFileName(), inputInfo.inputFormatClass, inputInfo.inputKeyClass, inputInfo.inputValueClass); rdd = SparkUtils.copyBinaryBlockMatrix((JavaPairRDD<MatrixIndexes, MatrixBlock>)rdd); //cp is workaround for read bug fromFile = true; } else { //default case MatrixBlock mb = mo.acquireRead(); //pin matrix in memory rdd = toMatrixJavaPairRDD(sc, mb, (int)mo.getNumRowsPerBlock(), (int)mo.getNumColumnsPerBlock()); mo.release(); //unpin matrix _parRDDs.registerRDD(rdd.id(), OptimizerUtils.estimatePartitionedSizeExactSparsity(mc), true); } //keep rdd handle for future operations on it RDDObject rddhandle = new RDDObject(rdd, mo.getVarName()); rddhandle.setHDFSFile(fromFile); mo.setRDDHandle(rddhandle); } //CASE 3: non-dirty (file exists on HDFS) else { // parallelize hdfs-resident file // For binary block, these are: SequenceFileInputFormat.class, MatrixIndexes.class, MatrixBlock.class if(inputInfo == InputInfo.BinaryBlockInputInfo) { rdd = sc.hadoopFile( mo.getFileName(), inputInfo.inputFormatClass, inputInfo.inputKeyClass, inputInfo.inputValueClass); //note: this copy is still required in Spark 1.4 because spark hands out whatever the inputformat //recordreader returns; the javadoc explicitly recommend to copy all key/value pairs rdd = SparkUtils.copyBinaryBlockMatrix((JavaPairRDD<MatrixIndexes, MatrixBlock>)rdd); //cp is workaround for read bug } else if(inputInfo == InputInfo.TextCellInputInfo || inputInfo == InputInfo.CSVInputInfo || inputInfo == InputInfo.MatrixMarketInputInfo) { rdd = sc.hadoopFile( mo.getFileName(), inputInfo.inputFormatClass, inputInfo.inputKeyClass, inputInfo.inputValueClass); rdd = ((JavaPairRDD<LongWritable, Text>)rdd).mapToPair( new CopyTextInputFunction() ); //cp is workaround for read bug } else if(inputInfo == InputInfo.BinaryCellInputInfo) { rdd = sc.hadoopFile( mo.getFileName(), inputInfo.inputFormatClass, inputInfo.inputKeyClass, inputInfo.inputValueClass); rdd = ((JavaPairRDD<MatrixIndexes, MatrixCell>)rdd).mapToPair( new CopyBinaryCellFunction() ); //cp is workaround for read bug } else { throw new DMLRuntimeException("Incorrect input format in getRDDHandleForVariable"); } //keep rdd handle for future operations on it RDDObject rddhandle = new RDDObject(rdd, mo.getVarName()); rddhandle.setHDFSFile(true); mo.setRDDHandle(rddhandle); } return rdd; } /** * FIXME: currently this implementation assumes matrix representations but frame signature * in order to support the old transform implementation. * * @param fo frame object * @param inputInfo input info * @return JavaPairRDD handle for a frame object * @throws DMLRuntimeException if DMLRuntimeException occurs */ @SuppressWarnings("unchecked") public JavaPairRDD<?,?> getRDDHandleForFrameObject( FrameObject fo, InputInfo inputInfo ) throws DMLRuntimeException { //NOTE: MB this logic should be integrated into FrameObject //However, for now we cannot assume that spark libraries are //always available and hence only store generic references in //matrix object while all the logic is in the SparkExecContext InputInfo inputInfo2 = (inputInfo==InputInfo.BinaryBlockInputInfo) ? InputInfo.BinaryBlockFrameInputInfo : inputInfo; JavaSparkContext sc = getSparkContext(); JavaPairRDD<?,?> rdd = null; //CASE 1: rdd already existing (reuse if checkpoint or trigger //pending rdd operations if not yet cached but prevent to re-evaluate //rdd operations if already executed and cached if( fo.getRDDHandle()!=null && (fo.getRDDHandle().isCheckpointRDD() || !fo.isCached(false)) ) { //return existing rdd handling (w/o input format change) rdd = fo.getRDDHandle().getRDD(); } //CASE 2: dirty in memory data or cached result of rdd operations else if( fo.isDirty() || fo.isCached(false) ) { //get in-memory matrix block and parallelize it //w/ guarded parallelize (fallback to export, rdd from file if too large) MatrixCharacteristics mc = fo.getMatrixCharacteristics(); boolean fromFile = false; if( !OptimizerUtils.checkSparkCollectMemoryBudget(mc, 0) || !_parRDDs.reserve( OptimizerUtils.estimatePartitionedSizeExactSparsity(mc)) ) { if( fo.isDirty() ) { //write only if necessary fo.exportData(); } rdd = sc.hadoopFile( fo.getFileName(), inputInfo2.inputFormatClass, inputInfo2.inputKeyClass, inputInfo2.inputValueClass); rdd = ((JavaPairRDD<LongWritable, FrameBlock>)rdd).mapToPair( new CopyFrameBlockPairFunction() ); //cp is workaround for read bug fromFile = true; } else { //default case FrameBlock fb = fo.acquireRead(); //pin frame in memory rdd = toFrameJavaPairRDD(sc, fb); fo.release(); //unpin frame _parRDDs.registerRDD(rdd.id(), OptimizerUtils.estimatePartitionedSizeExactSparsity(mc), true); } //keep rdd handle for future operations on it RDDObject rddhandle = new RDDObject(rdd, fo.getVarName()); rddhandle.setHDFSFile(fromFile); fo.setRDDHandle(rddhandle); } //CASE 3: non-dirty (file exists on HDFS) else { // parallelize hdfs-resident file // For binary block, these are: SequenceFileInputFormat.class, MatrixIndexes.class, MatrixBlock.class if(inputInfo2 == InputInfo.BinaryBlockFrameInputInfo) { rdd = sc.hadoopFile( fo.getFileName(), inputInfo2.inputFormatClass, inputInfo2.inputKeyClass, inputInfo2.inputValueClass); //note: this copy is still required in Spark 1.4 because spark hands out whatever the inputformat //recordreader returns; the javadoc explicitly recommend to copy all key/value pairs rdd = ((JavaPairRDD<LongWritable, FrameBlock>)rdd).mapToPair( new CopyFrameBlockPairFunction() ); //cp is workaround for read bug } else if(inputInfo2 == InputInfo.TextCellInputInfo || inputInfo2 == InputInfo.CSVInputInfo || inputInfo2 == InputInfo.MatrixMarketInputInfo) { rdd = sc.hadoopFile( fo.getFileName(), inputInfo2.inputFormatClass, inputInfo2.inputKeyClass, inputInfo2.inputValueClass); rdd = ((JavaPairRDD<LongWritable, Text>)rdd).mapToPair( new CopyTextInputFunction() ); //cp is workaround for read bug } else if(inputInfo2 == InputInfo.BinaryCellInputInfo) { throw new DMLRuntimeException("Binarycell not supported for frames."); } else { throw new DMLRuntimeException("Incorrect input format in getRDDHandleForVariable"); } //keep rdd handle for future operations on it RDDObject rddhandle = new RDDObject(rdd, fo.getVarName()); rddhandle.setHDFSFile(true); fo.setRDDHandle(rddhandle); } return rdd; } /** * TODO So far we only create broadcast variables but never destroy * them. This is a memory leak which might lead to executor out-of-memory. * However, in order to handle this, we need to keep track when broadcast * variables are no longer required. * * @param varname variable name * @return wrapper for broadcast variables * @throws DMLRuntimeException if DMLRuntimeException occurs */ @SuppressWarnings("unchecked") public PartitionedBroadcast<MatrixBlock> getBroadcastForVariable( String varname ) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; MatrixObject mo = getMatrixObject(varname); PartitionedBroadcast<MatrixBlock> bret = null; //reuse existing broadcast handle if( mo.getBroadcastHandle()!=null && mo.getBroadcastHandle().isValid() ) { bret = mo.getBroadcastHandle().getBroadcast(); } //create new broadcast handle (never created, evicted) if( bret == null ) { //account for overwritten invalid broadcast (e.g., evicted) if( mo.getBroadcastHandle()!=null ) CacheableData.addBroadcastSize(-mo.getBroadcastHandle().getSize()); //obtain meta data for matrix int brlen = (int) mo.getNumRowsPerBlock(); int bclen = (int) mo.getNumColumnsPerBlock(); //create partitioned matrix block and release memory consumed by input MatrixBlock mb = mo.acquireRead(); PartitionedBlock<MatrixBlock> pmb = new PartitionedBlock<MatrixBlock>(mb, brlen, bclen); mo.release(); //determine coarse-grained partitioning int numPerPart = PartitionedBroadcast.computeBlocksPerPartition(mo.getNumRows(), mo.getNumColumns(), brlen, bclen); int numParts = (int) Math.ceil((double)pmb.getNumRowBlocks()*pmb.getNumColumnBlocks() / numPerPart); Broadcast<PartitionedBlock<MatrixBlock>>[] ret = new Broadcast[numParts]; //create coarse-grained partitioned broadcasts if( numParts > 1 ) { for( int i=0; i<numParts; i++ ) { int offset = i * numPerPart; int numBlks = Math.min(numPerPart, pmb.getNumRowBlocks()*pmb.getNumColumnBlocks()-offset); PartitionedBlock<MatrixBlock> tmp = pmb.createPartition(offset, numBlks, new MatrixBlock()); ret[i] = getSparkContext().broadcast(tmp); } } else { //single partition ret[0] = getSparkContext().broadcast(pmb); } bret = new PartitionedBroadcast<MatrixBlock>(ret); BroadcastObject<MatrixBlock> bchandle = new BroadcastObject<MatrixBlock>(bret, varname, OptimizerUtils.estimatePartitionedSizeExactSparsity(mo.getMatrixCharacteristics())); mo.setBroadcastHandle(bchandle); CacheableData.addBroadcastSize(bchandle.getSize()); } if (DMLScript.STATISTICS) { Statistics.accSparkBroadCastTime(System.nanoTime() - t0); Statistics.incSparkBroadcastCount(1); } return bret; } @SuppressWarnings("unchecked") public PartitionedBroadcast<FrameBlock> getBroadcastForFrameVariable( String varname) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; FrameObject fo = getFrameObject(varname); PartitionedBroadcast<FrameBlock> bret = null; //reuse existing broadcast handle if( fo.getBroadcastHandle()!=null && fo.getBroadcastHandle().isValid() ) { bret = fo.getBroadcastHandle().getBroadcast(); } //create new broadcast handle (never created, evicted) if( bret == null ) { //account for overwritten invalid broadcast (e.g., evicted) if( fo.getBroadcastHandle()!=null ) CacheableData.addBroadcastSize(-fo.getBroadcastHandle().getSize()); //obtain meta data for frame int bclen = (int) fo.getNumColumns(); int brlen = OptimizerUtils.getDefaultFrameSize(); //create partitioned frame block and release memory consumed by input FrameBlock mb = fo.acquireRead(); PartitionedBlock<FrameBlock> pmb = new PartitionedBlock<FrameBlock>(mb, brlen, bclen); fo.release(); //determine coarse-grained partitioning int numPerPart = PartitionedBroadcast.computeBlocksPerPartition(fo.getNumRows(), fo.getNumColumns(), brlen, bclen); int numParts = (int) Math.ceil((double)pmb.getNumRowBlocks()*pmb.getNumColumnBlocks() / numPerPart); Broadcast<PartitionedBlock<FrameBlock>>[] ret = new Broadcast[numParts]; //create coarse-grained partitioned broadcasts if( numParts > 1 ) { for( int i=0; i<numParts; i++ ) { int offset = i * numPerPart; int numBlks = Math.min(numPerPart, pmb.getNumRowBlocks()*pmb.getNumColumnBlocks()-offset); PartitionedBlock<FrameBlock> tmp = pmb.createPartition(offset, numBlks, new FrameBlock()); ret[i] = getSparkContext().broadcast(tmp); } } else { //single partition ret[0] = getSparkContext().broadcast(pmb); } bret = new PartitionedBroadcast<FrameBlock>(ret); BroadcastObject<FrameBlock> bchandle = new BroadcastObject<FrameBlock>(bret, varname, OptimizerUtils.estimatePartitionedSizeExactSparsity(fo.getMatrixCharacteristics())); fo.setBroadcastHandle(bchandle); CacheableData.addBroadcastSize(bchandle.getSize()); } if (DMLScript.STATISTICS) { Statistics.accSparkBroadCastTime(System.nanoTime() - t0); Statistics.incSparkBroadcastCount(1); } return bret; } /** * Keep the output rdd of spark rdd operations as meta data of matrix/frame * objects in the symbol table. * * @param varname variable name * @param rdd JavaPairRDD handle for variable * @throws DMLRuntimeException if DMLRuntimeException occurs */ public void setRDDHandleForVariable(String varname, JavaPairRDD<?,?> rdd) throws DMLRuntimeException { CacheableData<?> obj = getCacheableData(varname); RDDObject rddhandle = new RDDObject(rdd, varname); obj.setRDDHandle( rddhandle ); } /** * Utility method for creating an RDD out of an in-memory matrix block. * * @param sc java spark context * @param src matrix block * @param brlen block row length * @param bclen block column length * @return JavaPairRDD handle to matrix block * @throws DMLRuntimeException if DMLRuntimeException occurs */ public static JavaPairRDD<MatrixIndexes,MatrixBlock> toMatrixJavaPairRDD(JavaSparkContext sc, MatrixBlock src, int brlen, int bclen) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; LinkedList<Tuple2<MatrixIndexes,MatrixBlock>> list = new LinkedList<Tuple2<MatrixIndexes,MatrixBlock>>(); if( src.getNumRows() <= brlen && src.getNumColumns() <= bclen ) { list.addLast(new Tuple2<MatrixIndexes,MatrixBlock>(new MatrixIndexes(1,1), src)); } else { boolean sparse = src.isInSparseFormat(); //create and write subblocks of matrix for(int blockRow = 0; blockRow < (int)Math.ceil(src.getNumRows()/(double)brlen); blockRow++) for(int blockCol = 0; blockCol < (int)Math.ceil(src.getNumColumns()/(double)bclen); blockCol++) { int maxRow = (blockRow*brlen + brlen < src.getNumRows()) ? brlen : src.getNumRows() - blockRow*brlen; int maxCol = (blockCol*bclen + bclen < src.getNumColumns()) ? bclen : src.getNumColumns() - blockCol*bclen; MatrixBlock block = new MatrixBlock(maxRow, maxCol, sparse); int row_offset = blockRow*brlen; int col_offset = blockCol*bclen; //copy submatrix to block src.sliceOperations( row_offset, row_offset+maxRow-1, col_offset, col_offset+maxCol-1, block ); //append block to sequence file MatrixIndexes indexes = new MatrixIndexes(blockRow+1, blockCol+1); list.addLast(new Tuple2<MatrixIndexes,MatrixBlock>(indexes, block)); } } JavaPairRDD<MatrixIndexes,MatrixBlock> result = sc.parallelizePairs(list); if (DMLScript.STATISTICS) { Statistics.accSparkParallelizeTime(System.nanoTime() - t0); Statistics.incSparkParallelizeCount(1); } return result; } public static JavaPairRDD<Long,FrameBlock> toFrameJavaPairRDD(JavaSparkContext sc, FrameBlock src) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; LinkedList<Tuple2<Long,FrameBlock>> list = new LinkedList<Tuple2<Long,FrameBlock>>(); //create and write subblocks of matrix int blksize = ConfigurationManager.getBlocksize(); for(int blockRow = 0; blockRow < (int)Math.ceil(src.getNumRows()/(double)blksize); blockRow++) { int maxRow = (blockRow*blksize + blksize < src.getNumRows()) ? blksize : src.getNumRows() - blockRow*blksize; int roffset = blockRow*blksize; FrameBlock block = new FrameBlock(src.getSchema()); //copy sub frame to block, incl meta data on first src.sliceOperations( roffset, roffset+maxRow-1, 0, src.getNumColumns()-1, block ); if( roffset == 0 ) block.setColumnMetadata(src.getColumnMetadata()); //append block to sequence file list.addLast(new Tuple2<Long,FrameBlock>((long)roffset+1, block)); } JavaPairRDD<Long,FrameBlock> result = sc.parallelizePairs(list); if (DMLScript.STATISTICS) { Statistics.accSparkParallelizeTime(System.nanoTime() - t0); Statistics.incSparkParallelizeCount(1); } return result; } /** * This method is a generic abstraction for calls from the buffer pool. * * @param rdd rdd object * @param rlen number of rows * @param clen number of columns * @param brlen number of rows in a block * @param bclen number of columns in a block * @param nnz number of non-zeros * @return matrix block * @throws DMLRuntimeException if DMLRuntimeException occurs */ @SuppressWarnings("unchecked") public static MatrixBlock toMatrixBlock(RDDObject rdd, int rlen, int clen, int brlen, int bclen, long nnz) throws DMLRuntimeException { return toMatrixBlock( (JavaPairRDD<MatrixIndexes, MatrixBlock>) rdd.getRDD(), rlen, clen, brlen, bclen, nnz); } /** * Utility method for creating a single matrix block out of a binary block RDD. * Note that this collect call might trigger execution of any pending transformations. * * NOTE: This is an unguarded utility function, which requires memory for both the output matrix * and its collected, blocked representation. * * @param rdd JavaPairRDD for matrix block * @param rlen number of rows * @param clen number of columns * @param brlen number of rows in a block * @param bclen number of columns in a block * @param nnz number of non-zeros * @return matrix block * @throws DMLRuntimeException if DMLRuntimeException occurs */ public static MatrixBlock toMatrixBlock(JavaPairRDD<MatrixIndexes,MatrixBlock> rdd, int rlen, int clen, int brlen, int bclen, long nnz) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; MatrixBlock out = null; if( rlen <= brlen && clen <= bclen ) //SINGLE BLOCK { //special case without copy and nnz maintenance List<Tuple2<MatrixIndexes,MatrixBlock>> list = rdd.collect(); if( list.size()>1 ) throw new DMLRuntimeException("Expecting no more than one result block."); else if( list.size()==1 ) out = list.get(0)._2(); else //empty (e.g., after ops w/ outputEmpty=false) out = new MatrixBlock(rlen, clen, true); } else //MULTIPLE BLOCKS { //determine target sparse/dense representation long lnnz = (nnz >= 0) ? nnz : (long)rlen * clen; boolean sparse = MatrixBlock.evalSparseFormatInMemory(rlen, clen, lnnz); //create output matrix block (w/ lazy allocation) out = new MatrixBlock(rlen, clen, sparse, lnnz); List<Tuple2<MatrixIndexes,MatrixBlock>> list = rdd.collect(); //copy blocks one-at-a-time into output matrix block long aNnz = 0; for( Tuple2<MatrixIndexes,MatrixBlock> keyval : list ) { //unpack index-block pair MatrixIndexes ix = keyval._1(); MatrixBlock block = keyval._2(); //compute row/column block offsets int row_offset = (int)(ix.getRowIndex()-1)*brlen; int col_offset = (int)(ix.getColumnIndex()-1)*bclen; int rows = block.getNumRows(); int cols = block.getNumColumns(); //append block if( sparse ) { //SPARSE OUTPUT //append block to sparse target in order to avoid shifting, where //we use a shallow row copy in case of MCSR and single column blocks //note: this append requires, for multiple column blocks, a final sort out.appendToSparse(block, row_offset, col_offset, clen>bclen); } else { //DENSE OUTPUT out.copy( row_offset, row_offset+rows-1, col_offset, col_offset+cols-1, block, false ); } //incremental maintenance nnz aNnz += block.getNonZeros(); } //post-processing output matrix if( sparse && clen>bclen ) out.sortSparseRows(); out.setNonZeros(aNnz); out.examSparsity(); } if (DMLScript.STATISTICS) { Statistics.accSparkCollectTime(System.nanoTime() - t0); Statistics.incSparkCollectCount(1); } return out; } @SuppressWarnings("unchecked") public static MatrixBlock toMatrixBlock(RDDObject rdd, int rlen, int clen, long nnz) throws DMLRuntimeException { return toMatrixBlock( (JavaPairRDD<MatrixIndexes, MatrixCell>) rdd.getRDD(), rlen, clen, nnz); } /** * Utility method for creating a single matrix block out of a binary cell RDD. * Note that this collect call might trigger execution of any pending transformations. * * @param rdd JavaPairRDD for matrix block * @param rlen number of rows * @param clen number of columns * @param nnz number of non-zeros * @return matrix block * @throws DMLRuntimeException if DMLRuntimeException occurs */ public static MatrixBlock toMatrixBlock(JavaPairRDD<MatrixIndexes, MatrixCell> rdd, int rlen, int clen, long nnz) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; MatrixBlock out = null; //determine target sparse/dense representation long lnnz = (nnz >= 0) ? nnz : (long)rlen * clen; boolean sparse = MatrixBlock.evalSparseFormatInMemory(rlen, clen, lnnz); //create output matrix block (w/ lazy allocation) out = new MatrixBlock(rlen, clen, sparse); List<Tuple2<MatrixIndexes,MatrixCell>> list = rdd.collect(); //copy blocks one-at-a-time into output matrix block for( Tuple2<MatrixIndexes,MatrixCell> keyval : list ) { //unpack index-block pair MatrixIndexes ix = keyval._1(); MatrixCell cell = keyval._2(); //append cell to dense/sparse target in order to avoid shifting for sparse //note: this append requires a final sort of sparse rows out.appendValue((int)ix.getRowIndex()-1, (int)ix.getColumnIndex()-1, cell.getValue()); } //post-processing output matrix if( sparse ) out.sortSparseRows(); out.recomputeNonZeros(); out.examSparsity(); if (DMLScript.STATISTICS) { Statistics.accSparkCollectTime(System.nanoTime() - t0); Statistics.incSparkCollectCount(1); } return out; } public static PartitionedBlock<MatrixBlock> toPartitionedMatrixBlock(JavaPairRDD<MatrixIndexes,MatrixBlock> rdd, int rlen, int clen, int brlen, int bclen, long nnz) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; PartitionedBlock<MatrixBlock> out = new PartitionedBlock<MatrixBlock>(rlen, clen, brlen, bclen); List<Tuple2<MatrixIndexes,MatrixBlock>> list = rdd.collect(); //copy blocks one-at-a-time into output matrix block for( Tuple2<MatrixIndexes,MatrixBlock> keyval : list ) { //unpack index-block pair MatrixIndexes ix = keyval._1(); MatrixBlock block = keyval._2(); out.setBlock((int)ix.getRowIndex(), (int)ix.getColumnIndex(), block); } if (DMLScript.STATISTICS) { Statistics.accSparkCollectTime(System.nanoTime() - t0); Statistics.incSparkCollectCount(1); } return out; } @SuppressWarnings("unchecked") public static FrameBlock toFrameBlock(RDDObject rdd, ValueType[] schema, int rlen, int clen) throws DMLRuntimeException { JavaPairRDD<Long,FrameBlock> lrdd = (JavaPairRDD<Long,FrameBlock>) rdd.getRDD(); return toFrameBlock(lrdd, schema, rlen, clen); } public static FrameBlock toFrameBlock(JavaPairRDD<Long,FrameBlock> rdd, ValueType[] schema, int rlen, int clen) throws DMLRuntimeException { long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0; if(schema == null) schema = UtilFunctions.nCopies(clen, ValueType.STRING); //create output frame block (w/ lazy allocation) FrameBlock out = new FrameBlock(schema); out.ensureAllocatedColumns(rlen); List<Tuple2<Long,FrameBlock>> list = rdd.collect(); //copy blocks one-at-a-time into output matrix block for( Tuple2<Long,FrameBlock> keyval : list ) { //unpack index-block pair int ix = (int)(keyval._1() - 1); FrameBlock block = keyval._2(); //copy into output frame out.copy( ix, ix+block.getNumRows()-1, 0, block.getNumColumns()-1, block ); if( ix == 0 ) { out.setColumnNames(block.getColumnNames()); out.setColumnMetadata(block.getColumnMetadata()); } } if (DMLScript.STATISTICS) { Statistics.accSparkCollectTime(System.nanoTime() - t0); Statistics.incSparkCollectCount(1); } return out; } @SuppressWarnings("unchecked") public static long writeRDDtoHDFS( RDDObject rdd, String path, OutputInfo oinfo ) { JavaPairRDD<MatrixIndexes,MatrixBlock> lrdd = (JavaPairRDD<MatrixIndexes, MatrixBlock>) rdd.getRDD(); //piggyback nnz maintenance on write LongAccumulator aNnz = getSparkContextStatic().sc().longAccumulator("nnz"); lrdd = lrdd.mapValues(new ComputeBinaryBlockNnzFunction(aNnz)); //save file is an action which also triggers nnz maintenance lrdd.saveAsHadoopFile(path, oinfo.outputKeyClass, oinfo.outputValueClass, oinfo.outputFormatClass); //return nnz aggregate of all blocks return aNnz.value(); } @SuppressWarnings("unchecked") public static void writeFrameRDDtoHDFS( RDDObject rdd, String path, OutputInfo oinfo ) { JavaPairRDD<?, FrameBlock> lrdd = (JavaPairRDD<Long, FrameBlock>) rdd.getRDD(); //convert keys to writables if necessary if( oinfo == OutputInfo.BinaryBlockOutputInfo ) { lrdd = ((JavaPairRDD<Long, FrameBlock>)lrdd).mapToPair( new LongFrameToLongWritableFrameFunction()); oinfo = OutputInfo.BinaryBlockFrameOutputInfo; } //save file is an action which also triggers nnz maintenance lrdd.saveAsHadoopFile(path, oinfo.outputKeyClass, oinfo.outputValueClass, oinfo.outputFormatClass); } /////////////////////////////////////////// // Cleanup of RDDs and Broadcast variables /////// /** * Adds a child rdd object to the lineage of a parent rdd. * * @param varParent parent variable * @param varChild child variable * @throws DMLRuntimeException if DMLRuntimeException occurs */ public void addLineageRDD(String varParent, String varChild) throws DMLRuntimeException { RDDObject parent = getCacheableData(varParent).getRDDHandle(); RDDObject child = getCacheableData(varChild).getRDDHandle(); parent.addLineageChild( child ); } /** * Adds a child broadcast object to the lineage of a parent rdd. * * @param varParent parent variable * @param varChild child variable * @throws DMLRuntimeException if DMLRuntimeException occurs */ public void addLineageBroadcast(String varParent, String varChild) throws DMLRuntimeException { RDDObject parent = getCacheableData(varParent).getRDDHandle(); BroadcastObject<?> child = getCacheableData(varChild).getBroadcastHandle(); parent.addLineageChild( child ); } public void addLineage(String varParent, String varChild, boolean broadcast) throws DMLRuntimeException { if( broadcast ) addLineageBroadcast(varParent, varChild); else addLineageRDD(varParent, varChild); } @Override public void cleanupMatrixObject( MatrixObject mo ) throws DMLRuntimeException { //NOTE: this method overwrites the default behavior of cleanupMatrixObject //and hence is transparently used by rmvar instructions and other users. The //core difference is the lineage-based cleanup of RDD and broadcast variables. try { if ( mo.isCleanupEnabled() ) { //compute ref count only if matrix cleanup actually necessary if ( !getVariables().hasReferences(mo) ) { //clean cached data mo.clearData(); //clean hdfs data if no pending rdd operations on it if( mo.isHDFSFileExists() && mo.getFileName()!=null ) { if( mo.getRDDHandle()==null ) { MapReduceTool.deleteFileWithMTDIfExistOnHDFS(mo.getFileName()); } else { //deferred file removal RDDObject rdd = mo.getRDDHandle(); rdd.setHDFSFilename(mo.getFileName()); } } //cleanup RDD and broadcast variables (recursive) //note: requires that mo.clearData already removed back references if( mo.getRDDHandle()!=null ) { rCleanupLineageObject(mo.getRDDHandle()); } if( mo.getBroadcastHandle()!=null ) { rCleanupLineageObject(mo.getBroadcastHandle()); } } } } catch(Exception ex) { throw new DMLRuntimeException(ex); } } @SuppressWarnings({ "rawtypes", "unchecked" }) private void rCleanupLineageObject(LineageObject lob) throws IOException { //abort recursive cleanup if still consumers if( lob.getNumReferences() > 0 ) return; //abort if still reachable through matrix object (via back references for //robustness in function calls and to prevent repeated scans of the symbol table) if( lob.hasBackReference() ) return; //cleanup current lineage object (from driver/executors) //incl deferred hdfs file removal (only if metadata set by cleanup call) if( lob instanceof RDDObject ) { RDDObject rdd = (RDDObject)lob; int rddID = rdd.getRDD().id(); cleanupRDDVariable(rdd.getRDD()); if( rdd.getHDFSFilename()!=null ) { //deferred file removal MapReduceTool.deleteFileWithMTDIfExistOnHDFS(rdd.getHDFSFilename()); } if( rdd.isParallelizedRDD() ) _parRDDs.deregisterRDD(rddID); } else if( lob instanceof BroadcastObject ) { PartitionedBroadcast pbm = ((BroadcastObject)lob).getBroadcast(); if( pbm != null ) //robustness for evictions for( Broadcast<PartitionedBlock> bc : pbm.getBroadcasts() ) cleanupBroadcastVariable(bc); CacheableData.addBroadcastSize(-((BroadcastObject)lob).getSize()); } //recursively process lineage children for( LineageObject c : lob.getLineageChilds() ){ c.decrementNumReferences(); rCleanupLineageObject(c); } } /** * This call destroys a broadcast variable at all executors and the driver. * Hence, it is intended to be used on rmvar only. Depending on the * ASYNCHRONOUS_VAR_DESTROY configuration, this is asynchronous or not. * * @param bvar broadcast variable */ public static void cleanupBroadcastVariable(Broadcast<?> bvar) { //In comparison to 'unpersist' (which would only delete the broadcast //from the executors), this call also deletes related data from the driver. if( bvar.isValid() ) { bvar.destroy( !ASYNCHRONOUS_VAR_DESTROY ); } } /** * This call removes an rdd variable from executor memory and disk if required. * Hence, it is intended to be used on rmvar only. Depending on the * ASYNCHRONOUS_VAR_DESTROY configuration, this is asynchronous or not. * * @param rvar rdd variable to remove */ public static void cleanupRDDVariable(JavaPairRDD<?,?> rvar) { if( rvar.getStorageLevel()!=StorageLevel.NONE() ) { rvar.unpersist( !ASYNCHRONOUS_VAR_DESTROY ); } } @SuppressWarnings("unchecked") public void repartitionAndCacheMatrixObject( String var ) throws DMLRuntimeException { MatrixObject mo = getMatrixObject(var); MatrixCharacteristics mcIn = mo.getMatrixCharacteristics(); //double check size to avoid unnecessary spark context creation if( !OptimizerUtils.exceedsCachingThreshold(mo.getNumColumns(), (double) OptimizerUtils.estimateSizeExactSparsity(mcIn)) ) return; //get input rdd and default storage level JavaPairRDD<MatrixIndexes,MatrixBlock> in = (JavaPairRDD<MatrixIndexes, MatrixBlock>) getRDDHandleForMatrixObject(mo, InputInfo.BinaryBlockInputInfo); //avoid unnecessary caching of input in order to reduce memory pressure if( mo.getRDDHandle().allowsShortCircuitRead() && isRDDMarkedForCaching(in.id()) && !isRDDCached(in.id()) ) { in = (JavaPairRDD<MatrixIndexes,MatrixBlock>) ((RDDObject)mo.getRDDHandle().getLineageChilds().get(0)).getRDD(); //investigate issue of unnecessarily large number of partitions int numPartitions = SparkUtils.getNumPreferredPartitions(mcIn, in); if( numPartitions < in.getNumPartitions() ) in = in.coalesce( numPartitions ); } //repartition rdd (force creation of shuffled rdd via merge), note: without deep copy albeit //executed on the original data, because there will be no merge, i.e., no key duplicates JavaPairRDD<MatrixIndexes,MatrixBlock> out = RDDAggregateUtils.mergeByKey(in, false); //convert mcsr into memory-efficient csr if potentially sparse if( OptimizerUtils.checkSparseBlockCSRConversion(mcIn) ) { out = out.mapValues(new CreateSparseBlockFunction(SparseBlock.Type.CSR)); } //persist rdd in default storage level out.persist( Checkpoint.DEFAULT_STORAGE_LEVEL ) .count(); //trigger caching to prevent contention //create new rdd handle, in-place of current matrix object RDDObject inro = mo.getRDDHandle(); //guaranteed to exist (see above) RDDObject outro = new RDDObject(out, var); //create new rdd object outro.setCheckpointRDD(true); //mark as checkpointed outro.addLineageChild(inro); //keep lineage to prevent cycles on cleanup mo.setRDDHandle(outro); } @SuppressWarnings("unchecked") public void cacheMatrixObject( String var ) throws DMLRuntimeException { //get input rdd and default storage level MatrixObject mo = getMatrixObject(var); //double check size to avoid unnecessary spark context creation if( !OptimizerUtils.exceedsCachingThreshold(mo.getNumColumns(), (double) OptimizerUtils.estimateSizeExactSparsity(mo.getMatrixCharacteristics())) ) return; JavaPairRDD<MatrixIndexes,MatrixBlock> in = (JavaPairRDD<MatrixIndexes, MatrixBlock>) getRDDHandleForMatrixObject(mo, InputInfo.BinaryBlockInputInfo); //persist rdd (force rdd caching, if not already cached) if( !isRDDCached(in.id()) ) in.count(); //trigger caching to prevent contention } public void setThreadLocalSchedulerPool(String poolName) { if( FAIR_SCHEDULER_MODE ) { getSparkContext().sc().setLocalProperty( "spark.scheduler.pool", poolName); } } public void cleanupThreadLocalSchedulerPool() { if( FAIR_SCHEDULER_MODE ) { getSparkContext().sc().setLocalProperty( "spark.scheduler.pool", null); } } private boolean isRDDMarkedForCaching( int rddID ) { JavaSparkContext jsc = getSparkContext(); return jsc.sc().getPersistentRDDs().contains(rddID); } public boolean isRDDCached( int rddID ) { //check that rdd is marked for caching JavaSparkContext jsc = getSparkContext(); if( !jsc.sc().getPersistentRDDs().contains(rddID) ) { return false; } //check that rdd is actually already cached for( RDDInfo info : jsc.sc().getRDDStorageInfo() ) { if( info.id() == rddID ) return info.isCached(); } return false; } /////////////////////////////////////////// // Spark configuration handling /////// /** * Obtains the lazily analyzed spark cluster configuration. * * @return spark cluster configuration */ public static SparkClusterConfig getSparkClusterConfig() { //lazy creation of spark cluster config if( _sconf == null ) _sconf = new SparkClusterConfig(); return _sconf; } /** * Obtains the available memory budget for broadcast variables in bytes. * * @return broadcast memory budget */ public static double getBroadcastMemoryBudget() { return getSparkClusterConfig() .getBroadcastMemoryBudget(); } /** * Obtain the available memory budget for data storage in bytes. * * @param min flag for minimum data budget * @param refresh flag for refresh with spark context * @return data memory budget */ public static double getDataMemoryBudget(boolean min, boolean refresh) { return getSparkClusterConfig() .getDataMemoryBudget(min, refresh); } /** * Obtain the number of executors in the cluster (excluding the driver). * * @return number of executors */ public static int getNumExecutors() { return getSparkClusterConfig() .getNumExecutors(); } /** * Obtain the default degree of parallelism (cores in the cluster). * * @param refresh flag for refresh with spark context * @return default degree of parallelism */ public static int getDefaultParallelism(boolean refresh) { return getSparkClusterConfig() .getDefaultParallelism(refresh); } public void checkAndRaiseValidationWarningJDKVersion() { //check for jdk version less than jdk8 boolean isLtJDK8 = InfrastructureAnalyzer.isJavaVersionLessThanJDK8(); //check multi-threaded executors int numExecutors = getNumExecutors(); int numCores = getDefaultParallelism(false); boolean multiThreaded = (numCores > numExecutors); //check for jdk version less than 8 (and raise warning if multi-threaded) if( isLtJDK8 && multiThreaded) { //get the jre version String version = System.getProperty("java.version"); LOG.warn("########################################################################################"); LOG.warn("### WARNING: Multi-threaded text reblock may lead to thread contention on JRE < 1.8 ####"); LOG.warn("### java.version = " + version); LOG.warn("### total number of executors = " + numExecutors); LOG.warn("### total number of cores = " + numCores); LOG.warn("### JDK-7032154: Performance tuning of sun.misc.FloatingDecimal/FormattedFloatingDecimal"); LOG.warn("### Workaround: Convert text to binary w/ changed configuration of one executor per core"); LOG.warn("########################################################################################"); } } /** * Captures relevant spark cluster configuration properties, e.g., memory budgets and * degree of parallelism. This configuration abstracts legacy (< Spark 1.6) and current * configurations and provides a unified view. */ private static class SparkClusterConfig { //broadcasts are stored in mem-and-disk in data space, this config //defines the fraction of data space to be used as broadcast budget private static final double BROADCAST_DATA_FRACTION = 0.3; //forward private config from Spark's UnifiedMemoryManager.scala (>1.6) private static final long RESERVED_SYSTEM_MEMORY_BYTES = 300 * 1024 * 1024; //meta configurations private boolean _legacyVersion = false; //spark version <1.6 private boolean _confOnly = false; //infrastructure info based on config //memory management configurations private long _memExecutor = -1; //mem per executor private double _memDataMinFrac = -1; //minimum data fraction private double _memDataMaxFrac = -1; //maximum data fraction private double _memBroadcastFrac = -1; //broadcast fraction //degree of parallelism configurations private int _numExecutors = -1; //total executors private int _defaultPar = -1; //total vcores public SparkClusterConfig() { SparkConf sconf = createSystemMLSparkConf(); _confOnly = true; //parse version and config String sparkVersion = getSparkVersionString(); _legacyVersion = (UtilFunctions.compareVersion(sparkVersion, "1.6.0") < 0 || sconf.getBoolean("spark.memory.useLegacyMode", false) ); //obtain basic spark configurations if( _legacyVersion ) analyzeSparkConfiguationLegacy(sconf); else analyzeSparkConfiguation(sconf); //log debug of created spark cluster config if( LOG.isDebugEnabled() ) LOG.debug( this.toString() ); } public long getBroadcastMemoryBudget() { return (long) (_memExecutor * _memBroadcastFrac); } public long getDataMemoryBudget(boolean min, boolean refresh) { //always get the current num executors on refresh because this might //change if not all executors are initially allocated and it is plan-relevant int numExec = _numExecutors; if( refresh && !_confOnly ) { JavaSparkContext jsc = getSparkContextStatic(); numExec = Math.max(jsc.sc().getExecutorMemoryStatus().size() - 1, 1); } //compute data memory budget return (long) ( numExec * _memExecutor * (min ? _memDataMinFrac : _memDataMaxFrac) ); } public int getNumExecutors() { if( _numExecutors < 0 ) analyzeSparkParallelismConfiguation(null); return _numExecutors; } public int getDefaultParallelism(boolean refresh) { if( _defaultPar < 0 && !refresh ) analyzeSparkParallelismConfiguation(null); //always get the current default parallelism on refresh because this might //change if not all executors are initially allocated and it is plan-relevant return ( refresh && !_confOnly ) ? getSparkContextStatic().defaultParallelism() : _defaultPar; } public void analyzeSparkConfiguationLegacy(SparkConf conf) { //ensure allocated spark conf SparkConf sconf = (conf == null) ? createSystemMLSparkConf() : conf; //parse absolute executor memory _memExecutor = UtilFunctions.parseMemorySize( sconf.get("spark.executor.memory", "1g")); //get data and shuffle memory ratios (defaults not specified in job conf) double dataFrac = sconf.getDouble("spark.storage.memoryFraction", 0.6); //default 60% _memDataMinFrac = dataFrac; _memDataMaxFrac = dataFrac; _memBroadcastFrac = dataFrac * BROADCAST_DATA_FRACTION; //default 18% //analyze spark degree of parallelism analyzeSparkParallelismConfiguation(sconf); } public void analyzeSparkConfiguation(SparkConf conf) { //ensure allocated spark conf SparkConf sconf = (conf == null) ? createSystemMLSparkConf() : conf; //parse absolute executor memory, incl fixed cut off _memExecutor = UtilFunctions.parseMemorySize( sconf.get("spark.executor.memory", "1g")) - RESERVED_SYSTEM_MEMORY_BYTES; //get data and shuffle memory ratios (defaults not specified in job conf) _memDataMinFrac = sconf.getDouble("spark.memory.storageFraction", 0.5); //default 50% _memDataMaxFrac = sconf.getDouble("spark.memory.fraction", 0.75); //default 75% _memBroadcastFrac = _memDataMaxFrac * BROADCAST_DATA_FRACTION; //default 22.5% //analyze spark degree of parallelism analyzeSparkParallelismConfiguation(sconf); } private void analyzeSparkParallelismConfiguation(SparkConf sconf) { int numExecutors = sconf.getInt("spark.executor.instances", -1); int numCoresPerExec = sconf.getInt("spark.executor.cores", -1); int defaultPar = sconf.getInt("spark.default.parallelism", -1); if( numExecutors > 1 && (defaultPar > 1 || numCoresPerExec > 1) ) { _numExecutors = numExecutors; _defaultPar = (defaultPar>1) ? defaultPar : numExecutors * numCoresPerExec; _confOnly &= true; } else { //get default parallelism (total number of executors and cores) //note: spark context provides this information while conf does not //(for num executors we need to correct for driver and local mode) JavaSparkContext jsc = getSparkContextStatic(); _numExecutors = Math.max(jsc.sc().getExecutorMemoryStatus().size() - 1, 1); _defaultPar = jsc.defaultParallelism(); _confOnly &= false; //implies env info refresh w/ spark context } } /** * Obtains the spark version string. If the spark context has been created, * we simply get it from the context; otherwise, we use Spark internal * constants to avoid creating the spark context just for the version. * * @return spark version string */ private String getSparkVersionString() { //check for existing spark context if( isSparkContextCreated() ) return getSparkContextStatic().version(); //use spark internal constant to avoid context creation return org.apache.spark.package$.MODULE$.SPARK_VERSION(); } @Override public String toString() { StringBuilder sb = new StringBuilder("SparkClusterConfig: \n"); sb.append("-- legacyVersion = " + _legacyVersion + " ("+getSparkContextStatic().version()+")\n" ); sb.append("-- confOnly = " + _confOnly + "\n"); sb.append("-- memExecutor = " + _memExecutor + "\n"); sb.append("-- memDataMinFrac = " + _memDataMinFrac + "\n"); sb.append("-- memDataMaxFrac = " + _memDataMaxFrac + "\n"); sb.append("-- memBroadcastFrac = " + _memBroadcastFrac + "\n"); sb.append("-- numExecutors = " + _numExecutors + "\n"); sb.append("-- defaultPar = " + _defaultPar + "\n"); return sb.toString(); } } private static class MemoryManagerParRDDs { private final long _limit; private long _size; private HashMap<Integer, Long> _rdds; public MemoryManagerParRDDs(double fractionMem) { _limit = (long)(fractionMem * InfrastructureAnalyzer.getLocalMaxMemory()); _size = 0; _rdds = new HashMap<Integer, Long>(); } public synchronized boolean reserve(long rddSize) { boolean ret = (rddSize + _size < _limit); _size += ret ? rddSize : 0; return ret; } public synchronized void registerRDD(int rddID, long rddSize, boolean reserved) { if( !reserved ) { throw new RuntimeException("Unsupported rdd registration " + "without size reservation for "+rddSize+" bytes."); } _rdds.put(rddID, rddSize); } public synchronized void deregisterRDD(int rddID) { long rddSize = _rdds.remove(rddID); _size -= rddSize; } public synchronized void clear() { _size = 0; _rdds.clear(); } } }