/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.sysml.udf.lib;
import org.apache.sysml.udf.FunctionParameter;
import org.apache.sysml.udf.PackageFunction;
import org.apache.sysml.udf.Scalar;
import org.apache.sysml.udf.Scalar.ScalarValueType;
import org.apache.sysml.utils.TensorboardLogger;
public class Caffe2DMLVisualizeWrapper extends PackageFunction
{
private static final long serialVersionUID = 1L;
private Scalar _ret;
@Override
public int getNumFunctionOutputs() {
return 1;
}
@Override
public FunctionParameter getFunctionOutput(int pos) {
if (pos == 0)
return _ret;
throw new RuntimeException(
"Invalid function output being requested");
}
@Override
public void execute() {
String layerName = ((Scalar) this.getFunctionInput(0)).getValue();
String varType = ((Scalar) this.getFunctionInput(1)).getValue();
String aggFn = ((Scalar) this.getFunctionInput(2)).getValue();
double x = Double.parseDouble(((Scalar) this.getFunctionInput(3)).getValue());
double y = Double.parseDouble(((Scalar) this.getFunctionInput(4)).getValue());
String logDir = ((Scalar) this.getFunctionInput(5)).getValue();
String key = null;
if(aggFn.equals("training_loss") || aggFn.equals("validation_loss") ||
aggFn.equals("training_accuracy") || aggFn.equals("validation_accuracy"))
key = aggFn;
else
key = aggFn + "_" + varType + "_" + layerName;
TensorboardLogger.writeScalar(logDir, key, (long)x, (float)y);
_ret = new Scalar(ScalarValueType.Double, String.valueOf(1));
}
}