/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.udf.lib; import org.apache.sysml.udf.FunctionParameter; import org.apache.sysml.udf.PackageFunction; import org.apache.sysml.udf.Scalar; import org.apache.sysml.udf.Scalar.ScalarValueType; import org.apache.sysml.utils.TensorboardLogger; public class Caffe2DMLVisualizeWrapper extends PackageFunction { private static final long serialVersionUID = 1L; private Scalar _ret; @Override public int getNumFunctionOutputs() { return 1; } @Override public FunctionParameter getFunctionOutput(int pos) { if (pos == 0) return _ret; throw new RuntimeException( "Invalid function output being requested"); } @Override public void execute() { String layerName = ((Scalar) this.getFunctionInput(0)).getValue(); String varType = ((Scalar) this.getFunctionInput(1)).getValue(); String aggFn = ((Scalar) this.getFunctionInput(2)).getValue(); double x = Double.parseDouble(((Scalar) this.getFunctionInput(3)).getValue()); double y = Double.parseDouble(((Scalar) this.getFunctionInput(4)).getValue()); String logDir = ((Scalar) this.getFunctionInput(5)).getValue(); String key = null; if(aggFn.equals("training_loss") || aggFn.equals("validation_loss") || aggFn.equals("training_accuracy") || aggFn.equals("validation_accuracy")) key = aggFn; else key = aggFn + "_" + varType + "_" + layerName; TensorboardLogger.writeScalar(logDir, key, (long)x, (float)y); _ret = new Scalar(ScalarValueType.Double, String.valueOf(1)); } }