/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.runtime.instructions.cp; import org.apache.sysml.api.DMLScript; import org.apache.sysml.api.DMLScript.RUNTIME_PLATFORM; import org.apache.sysml.hops.OptimizerUtils; import org.apache.sysml.parser.Expression.DataType; import org.apache.sysml.runtime.DMLRuntimeException; import org.apache.sysml.runtime.controlprogram.caching.CacheableData; import org.apache.sysml.runtime.controlprogram.context.ExecutionContext; import org.apache.sysml.runtime.functionobjects.Builtin; import org.apache.sysml.runtime.instructions.InstructionUtils; import org.apache.sysml.runtime.matrix.MatrixCharacteristics; import org.apache.sysml.runtime.matrix.data.MatrixBlock; import org.apache.sysml.runtime.matrix.data.MatrixIndexes; import org.apache.sysml.runtime.matrix.operators.AggregateUnaryOperator; import org.apache.sysml.runtime.matrix.operators.Operator; import org.apache.sysml.runtime.matrix.operators.SimpleOperator; public class AggregateUnaryCPInstruction extends UnaryCPInstruction { public AggregateUnaryCPInstruction(Operator op, CPOperand in, CPOperand out, String opcode, String istr){ this(op, in, null, null, out, opcode, istr); } public AggregateUnaryCPInstruction(Operator op, CPOperand in1, CPOperand in2, CPOperand in3, CPOperand out, String opcode, String istr){ super(op, in1, in2, in3, out, opcode, istr); _cptype = CPINSTRUCTION_TYPE.AggregateUnary; } public static AggregateUnaryCPInstruction parseInstruction(String str) throws DMLRuntimeException { String[] parts = InstructionUtils.getInstructionPartsWithValueType(str); String opcode = parts[0]; CPOperand in1 = new CPOperand(parts[1]); CPOperand out = new CPOperand(parts[2]); if(opcode.equalsIgnoreCase("nrow") || opcode.equalsIgnoreCase("ncol") || opcode.equalsIgnoreCase("length")){ return new AggregateUnaryCPInstruction(new SimpleOperator(Builtin.getBuiltinFnObject(opcode)), in1, out, opcode, str); } else //DEFAULT BEHAVIOR { AggregateUnaryOperator aggun = InstructionUtils.parseBasicAggregateUnaryOperator(opcode); aggun.setNumThreads( Integer.parseInt(parts[3]) ); return new AggregateUnaryCPInstruction(aggun, in1, out, opcode, str); } } @Override public void processInstruction( ExecutionContext ec ) throws DMLRuntimeException { String output_name = output.getName(); String opcode = getOpcode(); if( opcode.equalsIgnoreCase("nrow") || opcode.equalsIgnoreCase("ncol") || opcode.equalsIgnoreCase("length") ) { //check existence of input variable if( !ec.getVariables().keySet().contains(input1.getName()) ){ throw new DMLRuntimeException("Variable '"+input1.getName()+"' does not exist."); } //get meta data information MatrixCharacteristics mc = ec.getMatrixCharacteristics(input1.getName()); long rval = -1; if(opcode.equalsIgnoreCase("nrow")) rval = mc.getRows(); else if(opcode.equalsIgnoreCase("ncol")) rval = mc.getCols(); else if(opcode.equalsIgnoreCase("length")) rval = mc.getRows() * mc.getCols(); //check for valid output, and acquire read if necessary //(Use case: In case of forced exec type singlenode, there are no reblocks. For csv //we however, support unspecified input sizes, which requires a read to obtain the //required meta data) //Note: check on matrix characteristics to cover incorrect length (-1*-1 -> 1) if( !mc.dimsKnown() ) //invalid nrow/ncol/length { if( DMLScript.rtplatform == RUNTIME_PLATFORM.SINGLE_NODE || (input1.getDataType() == DataType.FRAME && OptimizerUtils.isHadoopExecutionMode()) ) { if( OptimizerUtils.isHadoopExecutionMode() ) { LOG.warn("Reading csv input frame of unkown size into memory for '"+opcode+"'."); } //read the input matrix/frame and explicitly refresh meta data CacheableData<?> obj = ec.getCacheableData(input1.getName()); obj.acquireRead(); obj.refreshMetaData(); obj.release(); //update meta data information mc = ec.getMatrixCharacteristics(input1.getName()); if(opcode.equalsIgnoreCase("nrow")) rval = mc.getRows(); else if(opcode.equalsIgnoreCase("ncol")) rval = mc.getCols(); else if(opcode.equalsIgnoreCase("length")) rval = mc.getRows() * mc.getCols(); } else { throw new DMLRuntimeException("Invalid meta data returned by '"+opcode+"': "+rval + ":" + instString); } } //create and set output scalar ScalarObject ret = null; switch( output.getValueType() ) { case INT: ret = new IntObject(output_name, rval); break; case DOUBLE: ret = new DoubleObject(output_name, rval); break; case STRING: ret = new StringObject(output_name, String.valueOf(rval)); break; default: throw new DMLRuntimeException("Invalid output value type: "+output.getValueType()); } ec.setScalarOutput(output_name, ret); return; } else { /* Default behavior for AggregateUnary Instruction */ MatrixBlock matBlock = ec.getMatrixInput(input1.getName()); AggregateUnaryOperator au_op = (AggregateUnaryOperator) _optr; MatrixBlock resultBlock = (MatrixBlock) matBlock.aggregateUnaryOperations(au_op, new MatrixBlock(), matBlock.getNumRows(), matBlock.getNumColumns(), new MatrixIndexes(1, 1), true); ec.releaseMatrixInput(input1.getName()); if(output.getDataType() == DataType.SCALAR){ DoubleObject ret = new DoubleObject(output_name, resultBlock.getValue(0, 0)); ec.setScalarOutput(output_name, ret); } else{ // since the computed value is a scalar, allocate a "temp" output matrix ec.setMatrixOutput(output_name, resultBlock); } } } }