/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.lops; import org.apache.sysml.lops.LopProperties.ExecLocation; import org.apache.sysml.lops.LopProperties.ExecType; import org.apache.sysml.lops.compile.JobType; import org.apache.sysml.parser.Expression.DataType; import org.apache.sysml.parser.Expression.ValueType; import org.apache.sysml.runtime.matrix.MatrixCharacteristics; public class WeightedDivMM extends Lop { public static final String OPCODE = "mapwdivmm"; public static final String OPCODE_CP = "wdivmm"; private int _numThreads = 1; public enum WDivMMType { DIV_LEFT, //t(t(U) %*% (W / U%*%t(V))) DIV_RIGHT, //(W / U%*%t(V)) %*% V DIV_LEFT_EPS, //t(t(U) %*% (W / (U%*%t(V) + x))) DIV_RIGHT_EPS, //(W / (U%*%t(V) + x)) %*% V MULT_BASIC, //(W * U%*%t(V)) MULT_LEFT, //t(t(U) %*% (W * U%*%t(V))) MULT_RIGHT, //(W * U%*%t(V)) %*% V MULT_MINUS_LEFT, //t(t(U) %*% ((X!=0) * (U%*%t(V) - X))) MULT_MINUS_RIGHT, //((X!=0) * (U%*%t(V) - X)) %*% V MULT_MINUS_4_LEFT, //t(t(U) %*% (W * (U%*%t(V) - X))) MULT_MINUS_4_RIGHT; //(W * (U%*%t(V) - X)) %*% V public boolean isBasic(){ return (this == MULT_BASIC); } public boolean isLeft() { return (this == DIV_LEFT || this == DIV_LEFT_EPS || this == MULT_LEFT || this == MULT_MINUS_LEFT || this == MULT_MINUS_4_LEFT); } public boolean isRight() { return !(isLeft() || isBasic()); } public boolean isMult() { return (this == MULT_LEFT || this == MULT_RIGHT || this == MULT_MINUS_LEFT || this == MULT_MINUS_RIGHT || this == MULT_MINUS_4_LEFT || this == MULT_MINUS_4_RIGHT); } public boolean isMinus(){ return (this == MULT_MINUS_LEFT || this == MULT_MINUS_RIGHT || this == MULT_MINUS_4_LEFT || this == MULT_MINUS_4_RIGHT); } public boolean hasFourInputs() { return (this == MULT_MINUS_4_LEFT || this == MULT_MINUS_4_RIGHT || this == DIV_LEFT_EPS || this == DIV_RIGHT_EPS); } public boolean hasScalar() { return (this == DIV_LEFT_EPS || this == DIV_RIGHT_EPS); } public MatrixCharacteristics computeOutputCharacteristics(long Xrlen, long Xclen, long rank) { if( isBasic() ) return new MatrixCharacteristics( Xrlen, Xclen, -1, -1); else return new MatrixCharacteristics(isLeft()?Xclen:Xrlen, rank, -1, -1); } } private WDivMMType _weightsType = null; public WeightedDivMM(Lop input1, Lop input2, Lop input3, Lop input4, DataType dt, ValueType vt, WDivMMType wt, ExecType et) throws LopsException { super(Lop.Type.WeightedDivMM, dt, vt); addInput(input1); //W addInput(input2); //U addInput(input3); //V addInput(input4); //X (optional) input1.addOutput(this); input2.addOutput(this); input3.addOutput(this); input4.addOutput(this); _weightsType = wt; setupLopProperties(et); } private void setupLopProperties( ExecType et ) { if( et == ExecType.MR ) { //setup MR parameters boolean breaksAlignment = true; boolean aligner = false; boolean definesMRJob = false; lps.addCompatibility(JobType.GMR); lps.addCompatibility(JobType.DATAGEN); lps.setProperties( inputs, ExecType.MR, ExecLocation.Map, breaksAlignment, aligner, definesMRJob ); } else //Spark/CP { //setup Spark parameters boolean breaksAlignment = false; boolean aligner = false; boolean definesMRJob = false; lps.addCompatibility(JobType.INVALID); lps.setProperties( inputs, et, ExecLocation.ControlProgram, breaksAlignment, aligner, definesMRJob ); } } public String toString() { return "Operation = WeightedDivMM"; } /* MR instruction generation */ @Override public String getInstructions(int input1, int input2, int input3, int input4, int output) { return getInstructions( String.valueOf(input1), String.valueOf(input2), String.valueOf(input3), String.valueOf(input4), String.valueOf(output)); } /* CP/SPARK instruction generation */ @Override public String getInstructions(String input1, String input2, String input3, String input4, String output) { StringBuilder sb = new StringBuilder(); final ExecType et = getExecType(); sb.append(et); sb.append(Lop.OPERAND_DELIMITOR); if( et == ExecType.CP ) sb.append(OPCODE_CP); else sb.append(OPCODE); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(0).prepInputOperand(input1)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(1).prepInputOperand(input2)); sb.append(Lop.OPERAND_DELIMITOR); sb.append( getInputs().get(2).prepInputOperand(input3)); sb.append(Lop.OPERAND_DELIMITOR); if ( (et == ExecType.MR) && (getInputs().get(3).getDataType() == DataType.SCALAR) ) { sb.append( getInputs().get(3).prepScalarInputOperand(et)); } else { sb.append( getInputs().get(3).prepInputOperand(input4)); } sb.append(Lop.OPERAND_DELIMITOR); sb.append( prepOutputOperand(output)); sb.append(Lop.OPERAND_DELIMITOR); sb.append(_weightsType); //append degree of parallelism if( et == ExecType.CP ) { sb.append( OPERAND_DELIMITOR ); sb.append( _numThreads ); } return sb.toString(); } @Override public boolean usesDistributedCache() { return (getExecType()==ExecType.MR); } @Override public int[] distributedCacheInputIndex() { return (getExecType()==ExecType.MR) ? new int[]{2,3} : new int[]{-1}; } public void setNumThreads(int k) { _numThreads = k; } }